Fraction interpolation walking a Farey tree

被引:0
|
作者
Mosko, M
Garcia-Luna-Aceves, JJ
机构
[1] Palo Alto Res Ctr, Palo Alto, CA 94304 USA
[2] Univ Calif Santa Cruz, Dept Comp Engn, Santa Cruz, CA 95014 USA
关键词
algorithms; graph algorithms; Farey;
D O I
10.1016/j.ipl.2005.11.014
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present an algorithm to find a proper fraction in simplest reduced terms between two reduced proper fractions. A proper fraction is a rational number m/n with m < n and n > 1. A fraction m/n is simpler than p/q if m <= p and n < q, with at least one inequality strict. The algorithm operates by walking a Farey tree in maximum steps down each branch. Through Monte Carlo simulation, we find that the present algorithm finds a simpler interpolation of two fractions than using the Euclidean-Convergent [D.W. Matula, P. Kornerup, Foundations of finite precision rational arithmetic, Computing 2 (Suppl.) (1980) 85-111] walk of a Farey tree and terminating at the first fraction satisfying the bound. Analysis shows that the new algorithms, with very high probability, will find an interpolation that is simpler than at least one of the bounds, and thus take less storage space than at least one of the bounds. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:19 / 23
页数:5
相关论文
共 50 条
  • [1] A property of Farey tree
    Kocic, L
    Stefanovska, L
    [J]. NUMERICAL ANALYSIS AND ITS APPLICATIONS, 2005, 3401 : 345 - 351
  • [2] A Farey fraction spin chain
    Kleban, P
    Özlük, AE
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 203 (03) : 635 - 647
  • [3] A Farey Fraction Spin Chain
    P. Kleban
    A.E. Özlük
    [J]. Communications in Mathematical Physics, 1999, 203 : 635 - 647
  • [4] Rotation orbits and the Farey tree
    Goldberg, L
    Tresser, C
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1996, 16 : 1011 - 1029
  • [5] ITERATIVE OPERATORS FOR FAREY TREE
    Kocic, Ljubisa
    Stefanovska, Liljana
    Gegovska-Zajkova, Sonja
    [J]. KRAGUJEVAC JOURNAL OF MATHEMATICS, 2007, 30 : 253 - 262
  • [6] Thermodynamics of the Farey Fraction Spin Chain
    Fiala, J
    Kleban, P
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2004, 116 (5-6) : 1471 - 1490
  • [7] Thermodynamics of the Farey Fraction Spin Chain
    Jan Fiala
    Peter Kleban
    [J]. Journal of Statistical Physics, 2004, 116 : 1471 - 1490
  • [8] REMARK ON THE FAREY FRACTION SPIN CHAIN
    Technau, Marc
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, : 63 - 69
  • [9] Random variables associated with the Farey tree
    Golubeva E.P.
    [J]. Journal of Mathematical Sciences, 2013, 193 (1) : 32 - 39
  • [10] The continued fraction and concatenation series on the Farey tree on two dimensional atomic arrays on periodic substrate potentials
    Mitani, H
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2000, 69 (10) : 3276 - 3286