Rotation orbits and the Farey tree

被引:14
|
作者
Goldberg, L
Tresser, C
机构
[1] BARRA INC,BERKELEY,CA 94707
[2] IBM CORP,YORKTOWN HTS,NY 10598
关键词
D O I
10.1017/S0143385700010154
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An alpha-rotation orbit for a self-map of the circle is an orbit whose cyclic order on the circle is the same as for any orbit of rotation by alpha. In this paper, we classify sets which are minimal sets comprised of alpha-rotation orbits for degree d self-coverings of the circle.
引用
收藏
页码:1011 / 1029
页数:19
相关论文
共 50 条
  • [1] A property of Farey tree
    Kocic, L
    Stefanovska, L
    [J]. NUMERICAL ANALYSIS AND ITS APPLICATIONS, 2005, 3401 : 345 - 351
  • [2] ITERATIVE OPERATORS FOR FAREY TREE
    Kocic, Ljubisa
    Stefanovska, Liljana
    Gegovska-Zajkova, Sonja
    [J]. KRAGUJEVAC JOURNAL OF MATHEMATICS, 2007, 30 : 253 - 262
  • [3] Fraction interpolation walking a Farey tree
    Mosko, M
    Garcia-Luna-Aceves, JJ
    [J]. INFORMATION PROCESSING LETTERS, 2006, 98 (01) : 19 - 23
  • [4] Random variables associated with the Farey tree
    Golubeva E.P.
    [J]. Journal of Mathematical Sciences, 2013, 193 (1) : 32 - 39
  • [5] Quantum accelerator modes from the Farey tree
    Buchleitner, A
    d'Arcy, MB
    Fishman, S
    Gardiner, SA
    Guarneri, I
    Ma, ZY
    Rebuzzini, L
    Summy, GS
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (16)
  • [6] Multifractal spectrum and thermodynamical formalism of the Farey tree
    Piacquadio, M
    Cesaratto, E
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (05): : 1331 - 1358
  • [7] THE FAREY TREE EMBODIED - IN BIMODAL MAPS OF THE INTERVAL
    RINGLAND, J
    SCHELL, M
    [J]. PHYSICS LETTERS A, 1989, 136 (7-8) : 379 - 386
  • [8] A WALK ALONG THE BRANCHES OF THE EXTENDED FAREY TREE
    LAGARIAS, JC
    TRESSER, CP
    [J]. IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1995, 39 (03) : 283 - 294
  • [9] Walk along the branches of the extended Farey tree
    Lagarias, J.C.
    Tresser, C.P.
    [J]. 1600, IBM, Armonk, NY, United States (39):
  • [10] The Mandelbrot set, the Farey tree, and the Fibonacci sequence
    Devaney, RL
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1999, 106 (04): : 289 - 302