Multifractal spectrum and thermodynamical formalism of the Farey tree

被引:2
|
作者
Piacquadio, M [1 ]
Cesaratto, E [1 ]
机构
[1] Univ Buenos Aires, Dept Matemat, Fac Ingn, RA-1063 Buenos Aires, DF, Argentina
来源
关键词
D O I
10.1142/S0218127401002754
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (Omega, mu) be a set of real numbers to which we associate a measure mu. Let alpha greater than or equal to 0, let Omega (alpha) = {chi is an element of Omega/alpha(chi) = alpha}, where alpha is the concentration index defined by Halsey et al. [1986]. Let f(H)(alpha) be the Hausdorff dimension of Omega (alpha). Let f(L)(alpha) be the Legendre spectrum of Omega, as defined in [Riedi & Mandelbrot, 1998]; and f(C)(alpha) the classical computational spectrum of Omega, defined in [Halsey et al., 1986]. The task of comparing fH, fe and fL for different measures mu was tackled by several authors [Cawley & Mauldin, 1992; Mandelbrot & Riedi, 1997; Riedi & Mandelbrot, 1998] working, mainly, on self-similar measures mu. The Farey tree partition in the unit segment induces a probability measure mu on an universal class of fractal sets Omega that occur in physics and other disciplines. This measure mu is the Hyperbolic measure mu (H), fundamentally different from any self-similar one. In this paper we compare f(H), f(C) and f(L) for mu (H).
引用
收藏
页码:1331 / 1358
页数:28
相关论文
共 50 条
  • [41] Quantum accelerator modes from the Farey tree
    Buchleitner, A
    d'Arcy, MB
    Fishman, S
    Gardiner, SA
    Guarneri, I
    Ma, ZY
    Rebuzzini, L
    Summy, GS
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (16)
  • [42] THE FAREY TREE EMBODIED - IN BIMODAL MAPS OF THE INTERVAL
    RINGLAND, J
    SCHELL, M
    [J]. PHYSICS LETTERS A, 1989, 136 (7-8) : 379 - 386
  • [43] A WALK ALONG THE BRANCHES OF THE EXTENDED FAREY TREE
    LAGARIAS, JC
    TRESSER, CP
    [J]. IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1995, 39 (03) : 283 - 294
  • [44] Walk along the branches of the extended Farey tree
    Lagarias, J.C.
    Tresser, C.P.
    [J]. 1600, IBM, Armonk, NY, United States (39):
  • [45] The Mandelbrot set, the Farey tree, and the Fibonacci sequence
    Devaney, RL
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1999, 106 (04): : 289 - 302
  • [46] Theory, Analyses and Predictions of Multifractal Formalism and Multifractal Modelling for Stroke Subtypes' Classification
    Karaca, Yeliz
    Baleanu, Dumitru
    Moonis, Majaz
    Zhang, Yu-Dong
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2020, PT II, 2020, 12250 : 410 - 425
  • [47] Multifractal formalism for self-similar bridges
    Huillet, T.
    Jeannet, B.
    [J]. Journal of Physics A: Mathematical and General, 31 (11):
  • [48] A WAVELET MULTIFRACTAL FORMALISM FOR SIMULTANEOUS SINGULARITIES OF FUNCTIONS
    Aouidi, Jamil
    Ben Mabrouk, Anouar
    Ben Slimane, Mourad
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2014, 12 (01)
  • [49] ON THE MULTIFRACTAL FORMALISM FOR BERNOULLI PRODUCTS OF INVERTIBLE MATRICES
    Bhouri, Imen
    Tlili, Houssem
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 24 (04) : 1129 - 1145
  • [50] Baire generic results for the anisotropic multifractal formalism
    Ben Slimane, Mourad
    Ben Braiek, Hnia
    [J]. REVISTA MATEMATICA COMPLUTENSE, 2016, 29 (01): : 127 - 167