A vectorial multifractal formalism

被引:0
|
作者
Peyrière, J [1 ]
机构
[1] Univ Paris 11, CNRS, UMR 8628, F-91405 Orsay, France
关键词
Hausdorff measure; Hausdorff dimension; packing measure; packing dimension; multifractal;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a formalism to perform the multifractal analysis of vector valued functions of balls in a metric space.
引用
收藏
页码:217 / 230
页数:14
相关论文
共 50 条
  • [41] The Short-Time Multifractal Formalism: Definition and Implement
    Xiong Gang
    Yang Xiaoniu
    Zhao Huichang
    [J]. ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, PROCEEDINGS: WITH ASPECTS OF CONTEMPORARY INTELLIGENT COMPUTING TECHNIQUES, 2008, 15 : 541 - +
  • [42] The Multifractal Formalism for Measures, Review and Extension to Mixed Cases
    Mohamed Menceur
    Anouar Ben Mabrouk
    Kamel Betina
    [J]. Analysis in Theory and Applications, 2016, 32 (04) : 303 - 332
  • [43] On multifractal formalism for self-similar measures with overlaps
    Julien Barral
    De-Jun Feng
    [J]. Mathematische Zeitschrift, 2021, 298 : 359 - 383
  • [44] Multifractal formalism by enforcing the universal behavior of scaling functions
    Mukli, Peter
    Nagy, Zoltan
    Eke, Andras
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 417 : 150 - 167
  • [45] Anomalies in Multifractal Formalism for Local Time of Brownian Motion
    G. M. Molchan
    [J]. Journal of Statistical Physics, 1998, 91 : 199 - 220
  • [46] Multifractal formalism for selfsimilar functions expanded in singular basis
    Ben Slimane, M
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2001, 11 (03) : 387 - 419
  • [47] Some exceptional phenomena in multifractal formalism: Part II
    Feng, De-Jun
    Lau, Ka-Sing
    Wang, Xiang-Yang
    [J]. ASIAN JOURNAL OF MATHEMATICS, 2005, 9 (04) : 473 - 488
  • [48] Multifractal formalism for the inverse of random weak Gibbs measures
    Yuan, Zhihui
    [J]. STOCHASTICS AND DYNAMICS, 2020, 20 (04)
  • [49] Unconventional multifractal formalism and image analysis of natural fractals
    Ficker, T
    Druckmüller, M
    Martisek, D
    [J]. CZECHOSLOVAK JOURNAL OF PHYSICS, 1999, 49 (10) : 1445 - 1459
  • [50] The refined multifractal formalism of some homogeneous Moran measures
    Zied Douzi
    Bilel Selmi
    Anouar Ben Mabrouk
    [J]. The European Physical Journal Special Topics, 2021, 230 : 3815 - 3834