Baire generic results for the anisotropic multifractal formalism

被引:0
|
作者
Mourad Ben Slimane
Hnia Ben Braiek
机构
[1] College of Science,King Saud University, Department of Mathematics
[2] Faculté des Sciences de Tunis,Laboratoire de Recherche Équations aux Dérivées Partielles et Applications
[3] Université de Tunis El Manar,undefined
来源
关键词
Triebel anisotropic wavelet bases; Anisotropic Hölder regularity; Anisotropic Besov and Sobolev spaces; Anisotropic scaling function; Anisotropic dyadic approximation ; Baire categories; 28A78; 42C40; 54E52;
D O I
暂无
中图分类号
学科分类号
摘要
Ben Slimane (Math Proc Camb Philos Soc 124:329–363, 1998) has constructed specific anisotropic selfsimilar functions as counter-examples for the isotropic multifractal formalism. An anisotropic multifractal formalism has been formulated and its validity for anisotropic selfsimilar functions has been proved. In this paper, using Triebel anisotropic wavelet decompositions, we first obtain lower bounds of the anisotropic scaling function and upper bounds of the u-spectrum of singularities valid for all functions. We then investigate the generic validity, in the sense of Baire’s categories, of the anisotropic formalism in some anisotropic functional spaces. We thus extend in the anisotropic setting some results of Jaffard (J Math Pure Appl 79:525–552, 2000, Ann Appl Probab 10:313–329, 2000) and Jaffard and Meyer (Memoirs of the American Mathematical Society, vol. 123, 1996).
引用
收藏
页码:127 / 167
页数:40
相关论文
共 50 条