Quasi-perfect linear codes with minimum distance 4

被引:14
|
作者
Giulietti, Massimo [1 ]
Pasticci, Fabio [1 ]
机构
[1] Univ Perugia, Dipartimento Matemat & Informat, I-06123 Perugia, Italy
关键词
complete caps in projective spaces; covering radius; error-correcting codes; length function; quasi-perfect codes;
D O I
10.1109/TIT.2007.894688
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Some new infinite families of short quasi-perfect linear codes are described. Such codes provide improvements on the currently known upper bounds on the minimal length of a quasi-perfect [n, n - m, 4](q)-code when either 1) q = 16, m >= 5, in odd, or 2) q = 2(i), 7 <= i <= 15, m >= 4, or 3) q 2(2l), l >= 8, m >= 5; m, odd. As quasi-perfect [n, n - m, 4](q)-codes and complete n-caps in projective spaces PG(m. - 1, q) are equivalent objects, new upper bounds on the size of the smallest complete cap in PG(m - 1, q) are obtained.
引用
收藏
页码:1928 / 1935
页数:8
相关论文
共 50 条
  • [1] Quasi-perfect codes with small distance
    Etzion, T
    Mounits, B
    2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 453 - 453
  • [2] Quasi-perfect codes with small distance
    Etzion, T
    Mounits, B
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (11) : 3938 - 3946
  • [3] Quasi-perfect Lee distance codes
    AlBdaiwi, BF
    Bose, B
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (06) : 1535 - 1539
  • [4] Weight Spectrum of Quasi-Perfect Binary Codes with Distance 4
    Afanassiev, Valentin B.
    Davydov, Alexander A.
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 2193 - 2197
  • [5] BINARY LINEAR QUASI-PERFECT CODES ARE NORMAL
    HOU, XD
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (02) : 378 - 379
  • [6] Fast decoding of quasi-perfect Lee distance codes
    Horak, Peter
    AlBdaiwi, Bader F.
    DESIGNS CODES AND CRYPTOGRAPHY, 2006, 40 (03) : 357 - 367
  • [7] Fast decoding of quasi-perfect Lee distance codes
    Peter Horak
    Bader F. AlBdaiwi
    Designs, Codes and Cryptography, 2006, 40 : 357 - 367
  • [8] Quasi-perfect linear codes from planar and APN functions
    Chunlei Li
    Tor Helleseth
    Cryptography and Communications, 2016, 8 : 215 - 227
  • [9] Quasi-perfect linear codes from planar and APN functions
    Li, Chunlei
    Helleseth, Tor
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2016, 8 (02): : 215 - 227
  • [10] Binary and ternary linear quasi-perfect codes with small dimensions
    Baicheva, Tsonka
    Bouyukliev, Iliya
    Dodunekov, Stefan
    Fack, Veerle
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (09) : 4335 - 4339