Binary and ternary linear quasi-perfect codes with small dimensions

被引:5
|
作者
Baicheva, Tsonka [1 ]
Bouyukliev, Iliya [1 ]
Dodunekov, Stefan [2 ]
Fack, Veerle [3 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, Veliko Tarnovo 5000, Bulgaria
[2] Bulgarian Acad Sci, Inst Math & Informat, BU-1113 Sofia, Bulgaria
[3] Univ Ghent, Dept Appl Math & Comp Sci, B-9000 Ghent, Belgium
关键词
classification of codes; covering radius; linear codes; quasi-perfect codes;
D O I
10.1109/TIT.2008.928277
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The aim of this work is a systematic investigation of the possible parameters of quasi-perfect (QP) binary and ternary linear codes of small dimensions and preparing a complete classification of all such codes. First, we give a list of infinite families of QP codes which includes all binary, ternary, and quaternary codes known to us. We continue further with a list of sporadic examples of binary and ternary QP codes. Later we present the results of our investigation where binary QP codes of dimensions up to 14 and ternary QP codes of dimensions up to 13 are classified.
引用
收藏
页码:4335 / 4339
页数:5
相关论文
共 50 条
  • [1] BINARY LINEAR QUASI-PERFECT CODES ARE NORMAL
    HOU, XD
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (02) : 378 - 379
  • [2] A family of ternary quasi-perfect BCH codes
    Danev, Danyo
    Dodunekov, Stefan
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2008, 49 (1-3) : 265 - 271
  • [3] Quasi-perfect codes with small distance
    Etzion, T
    Mounits, B
    [J]. 2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 453 - 453
  • [4] Quasi-perfect codes with small distance
    Etzion, T
    Mounits, B
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (11) : 3938 - 3946
  • [5] A family of ternary quasi-perfect BCH codes
    Danyo Danev
    Stefan Dodunekov
    [J]. Designs, Codes and Cryptography, 2008, 49 : 265 - 271
  • [6] A REMARK CONCERNING EXISTENCE OF BINARY QUASI-PERFECT CODES
    WAGNER, TJ
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1966, 12 (03) : 401 - +
  • [7] Quasi-perfect linear codes with minimum distance 4
    Giulietti, Massimo
    Pasticci, Fabio
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (05) : 1928 - 1935
  • [8] Weight Spectrum of Quasi-Perfect Binary Codes with Distance 4
    Afanassiev, Valentin B.
    Davydov, Alexander A.
    [J]. 2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 2193 - 2197
  • [9] On Decoding Binary Perfect and Quasi-Perfect Codes over Markov Noise Channels
    Al-Lawati, Haider
    Alajaji, Fady
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2009, 57 (04) : 873 - 878
  • [10] A family of constacyclic ternary quasi-perfect codes with covering radius 3
    Danev, Danyo
    Dodunekov, Stefan
    Radkova, Diana
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2011, 59 (1-3) : 111 - 118