Binary and ternary linear quasi-perfect codes with small dimensions

被引:5
|
作者
Baicheva, Tsonka [1 ]
Bouyukliev, Iliya [1 ]
Dodunekov, Stefan [2 ]
Fack, Veerle [3 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, Veliko Tarnovo 5000, Bulgaria
[2] Bulgarian Acad Sci, Inst Math & Informat, BU-1113 Sofia, Bulgaria
[3] Univ Ghent, Dept Appl Math & Comp Sci, B-9000 Ghent, Belgium
关键词
classification of codes; covering radius; linear codes; quasi-perfect codes;
D O I
10.1109/TIT.2008.928277
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The aim of this work is a systematic investigation of the possible parameters of quasi-perfect (QP) binary and ternary linear codes of small dimensions and preparing a complete classification of all such codes. First, we give a list of infinite families of QP codes which includes all binary, ternary, and quaternary codes known to us. We continue further with a list of sporadic examples of binary and ternary QP codes. Later we present the results of our investigation where binary QP codes of dimensions up to 14 and ternary QP codes of dimensions up to 13 are classified.
引用
收藏
页码:4335 / 4339
页数:5
相关论文
共 50 条
  • [31] Quasi-Perfect Codes From Cayley Graphs Over Integer Rings
    Queiroz, Catia Quilles
    Camarero, Cristobal
    Martinez, Carmen
    Palazzo, Reginaldo, Jr.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (09) : 5905 - 5916
  • [32] A characterization of quasi-perfect equilibria
    Gatti, Nicola
    Gilli, Mario
    Marchesi, Alberto
    [J]. GAMES AND ECONOMIC BEHAVIOR, 2020, 122 : 240 - 255
  • [33] Quasi-Perfect Stackelberg Equilibrium
    Marchesi, Alberto
    Farina, Gabriele
    Kroer, Christian
    Gatti, Nicola
    Sandholm, Tuomas
    [J]. THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 2117 - 2124
  • [34] GENERALIZED QUASI-PERFECT NUMBERS
    COHEN, GL
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1983, 27 (01) : 153 - 155
  • [35] On the number of q-ary quasi-perfect codes with covering radius 2
    Alexander M. Romanov
    [J]. Designs, Codes and Cryptography, 2022, 90 : 1713 - 1719
  • [36] The Cayley Graphs Associated With Some Quasi-Perfect Lee Codes Are Ramanujan Graphs
    Bibak, Khodakhast
    Kapron, Bruce M.
    Srinivasan, Venkatesh
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (11) : 6355 - 6358
  • [37] On the number of q-ary quasi-perfect codes with covering radius 2
    Romanov, Alexander M.
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (08) : 1713 - 1719
  • [38] A sufficient condition for a code to achieve the minimum decoding error probability - Generalization of perfect and quasi-perfect codes
    Hamada, M
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2000, E83A (10) : 1870 - 1877
  • [39] QUASI-PERFECT AGGREGATION AND THE CONVERGENCE APPROACH
    HENOCQ, C
    KEMPF, H
    [J]. REVUE ECONOMIQUE, 1984, 35 (05): : 911 - 927
  • [40] Linear Induction Actuators for a Haptic Interface: a quasi-perfect transparent mechanism
    Ortega, Alberto
    Weill-Duflos, Antoine
    Haliyo, Sinan
    Regnier, Stephane
    Hayward, Vincent
    [J]. 2017 IEEE WORLD HAPTICS CONFERENCE (WHC), 2017, : 575 - 580