Quasi-perfect linear codes with minimum distance 4

被引:14
|
作者
Giulietti, Massimo [1 ]
Pasticci, Fabio [1 ]
机构
[1] Univ Perugia, Dipartimento Matemat & Informat, I-06123 Perugia, Italy
关键词
complete caps in projective spaces; covering radius; error-correcting codes; length function; quasi-perfect codes;
D O I
10.1109/TIT.2007.894688
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Some new infinite families of short quasi-perfect linear codes are described. Such codes provide improvements on the currently known upper bounds on the minimal length of a quasi-perfect [n, n - m, 4](q)-code when either 1) q = 16, m >= 5, in odd, or 2) q = 2(i), 7 <= i <= 15, m >= 4, or 3) q 2(2l), l >= 8, m >= 5; m, odd. As quasi-perfect [n, n - m, 4](q)-codes and complete n-caps in projective spaces PG(m. - 1, q) are equivalent objects, new upper bounds on the size of the smallest complete cap in PG(m - 1, q) are obtained.
引用
收藏
页码:1928 / 1935
页数:8
相关论文
共 50 条
  • [31] A family of constacyclic ternary quasi-perfect codes with covering radius 3
    Danyo Danev
    Stefan Dodunekov
    Diana Radkova
    Designs, Codes and Cryptography, 2011, 59 : 111 - 118
  • [32] Quasi-Perfect Codes From Cayley Graphs Over Integer Rings
    Queiroz, Catia Quilles
    Camarero, Cristobal
    Martinez, Carmen
    Palazzo, Reginaldo, Jr.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (09) : 5905 - 5916
  • [33] A characterization of quasi-perfect equilibria
    Gatti, Nicola
    Gilli, Mario
    Marchesi, Alberto
    GAMES AND ECONOMIC BEHAVIOR, 2020, 122 : 240 - 255
  • [34] Quasi-Perfect Stackelberg Equilibrium
    Marchesi, Alberto
    Farina, Gabriele
    Kroer, Christian
    Gatti, Nicola
    Sandholm, Tuomas
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 2117 - 2124
  • [35] GENERALIZED QUASI-PERFECT NUMBERS
    COHEN, GL
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1983, 27 (01) : 153 - 155
  • [36] On the number of q-ary quasi-perfect codes with covering radius 2
    Alexander M. Romanov
    Designs, Codes and Cryptography, 2022, 90 : 1713 - 1719
  • [37] The Cayley Graphs Associated With Some Quasi-Perfect Lee Codes Are Ramanujan Graphs
    Bibak, Khodakhast
    Kapron, Bruce M.
    Srinivasan, Venkatesh
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (11) : 6355 - 6358
  • [38] On the number of q-ary quasi-perfect codes with covering radius 2
    Romanov, Alexander M.
    DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (08) : 1713 - 1719
  • [39] On computing the minimum distance of linear codes
    Mohri, Masami
    Morii, Masakatu
    Electronics and Communications in Japan, Part III: Fundamental Electronic Science (English translation of Denshi Tsushin Gakkai Ronbunshi), 2000, 83 (11): : 32 - 42
  • [40] Minimum distance of linear codes and the α-invariant
    Garrousian, Mehdi
    Tohaneanu, Stefan O.
    ADVANCES IN APPLIED MATHEMATICS, 2015, 71 : 190 - 207