Quasi-perfect linear codes with minimum distance 4

被引:14
|
作者
Giulietti, Massimo [1 ]
Pasticci, Fabio [1 ]
机构
[1] Univ Perugia, Dipartimento Matemat & Informat, I-06123 Perugia, Italy
关键词
complete caps in projective spaces; covering radius; error-correcting codes; length function; quasi-perfect codes;
D O I
10.1109/TIT.2007.894688
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Some new infinite families of short quasi-perfect linear codes are described. Such codes provide improvements on the currently known upper bounds on the minimal length of a quasi-perfect [n, n - m, 4](q)-code when either 1) q = 16, m >= 5, in odd, or 2) q = 2(i), 7 <= i <= 15, m >= 4, or 3) q 2(2l), l >= 8, m >= 5; m, odd. As quasi-perfect [n, n - m, 4](q)-codes and complete n-caps in projective spaces PG(m. - 1, q) are equivalent objects, new upper bounds on the size of the smallest complete cap in PG(m - 1, q) are obtained.
引用
收藏
页码:1928 / 1935
页数:8
相关论文
共 50 条