Fast decoding of quasi-perfect Lee distance codes

被引:0
|
作者
Peter Horak
Bader F. AlBdaiwi
机构
[1] University of Washington,Interdisciplinary Arts and Sciences
[2] Kuwait University,Department of Mathematics and Computer Science
来源
关键词
Lee codes; Fast decoding; 94B35;
D O I
暂无
中图分类号
学科分类号
摘要
A code D over Z2n is called a quasi-perfect Lee distance-(2t + 1) code if dL(V,W) ≥ 2t + 1 for every two code words V,W in D, and every word in Z2n is at distance  ≤  t + 1 from at least one code word, where DL(V,W) is the Lee distance of V and W. In this paper we present a fast decoding algorithm for quasi-perfect Lee codes. The basic idea of the algorithm comes from a geometric representation of D in the 2-dimensional plane. It turns out that to decode a word it suffices to calculate its distance to at most four code words.
引用
收藏
页码:357 / 367
页数:10
相关论文
共 50 条
  • [1] Fast decoding of quasi-perfect Lee distance codes
    Horak, Peter
    AlBdaiwi, Bader F.
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2006, 40 (03) : 357 - 367
  • [2] Quasi-perfect Lee distance codes
    AlBdaiwi, BF
    Bose, B
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (06) : 1535 - 1539
  • [3] Quasi-perfect Lee distance codes in Z2K
    AlMohammad, BFA
    Bose, B
    [J]. ISIT: 2002 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2002, : 486 - 486
  • [4] Quasi-perfect codes with small distance
    Etzion, T
    Mounits, B
    [J]. 2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 453 - 453
  • [5] Quasi-perfect codes with small distance
    Etzion, T
    Mounits, B
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (11) : 3938 - 3946
  • [6] Quasi-perfect linear codes with minimum distance 4
    Giulietti, Massimo
    Pasticci, Fabio
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (05) : 1928 - 1935
  • [7] On Decoding Binary Perfect and Quasi-Perfect Codes over Markov Noise Channels
    Al-Lawati, Haider
    Alajaji, Fady
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2009, 57 (04) : 873 - 878
  • [8] Quasi-Perfect Lee Codes of Radius 2 and Arbitrarily Large Dimension
    Camarero, Cristobal
    Martinez, Carmen
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (03) : 1183 - 1192
  • [9] Weight Spectrum of Quasi-Perfect Binary Codes with Distance 4
    Afanassiev, Valentin B.
    Davydov, Alexander A.
    [J]. 2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 2193 - 2197
  • [10] On decoding binary quasi-perfect codes over Markov noise channels
    Al-Lawati, Haider
    Alajaji, Fady
    [J]. 2007 10TH CANADIAN WORKSHOP ON INFORMATION THEORY, 2007, : 164 - 167