New congruences modulo 5 and 9 for partitions with odd parts distinct

被引:7
|
作者
Fang, Houqing [1 ]
Xue, Fanggang [1 ]
Yao, Olivia X. M. [1 ]
机构
[1] Jiangsu Univ, Dept Math, Zhenjiang 212013, Jiangsu, Peoples R China
基金
美国国家科学基金会;
关键词
Congruence; partition; odd parts distinct; theta function; sum of triangular numbers; CONJECTURES; SQUARES; NUMBER; SUMS; SUN;
D O I
10.2989/16073606.2019.1653394
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let pod(n) denote the number of partitions of an integer n wherein the odd parts are distinct. Recently, a number of congruences for pod(n) have been established. In this paper, we establish the generating function of pod(5n + 2) and then prove new infinite families of congruences modulo 5 and 9 for pod(n) by using the formulas for t(3)(n) and t(5)(n), where t(k) (n) is the number of representations of n as a sum of k triangular numbers. In particular, we generalize a congruence for pod(n) due to Radu and Sellers.
引用
收藏
页码:1573 / 1586
页数:14
相关论文
共 50 条
  • [31] Congruences for 5-regular partitions modulo powers of 5
    Liuquan Wang
    The Ramanujan Journal, 2017, 44 : 343 - 358
  • [32] General congruences modulo 5 and 7 for colour partitions
    Saikia, Nipen
    Boruah, Chayanika
    JOURNAL OF ANALYSIS, 2021, 29 (03): : 917 - 926
  • [33] Congruences for 5-regular partitions modulo powers of 5
    Wang, Liuquan
    RAMANUJAN JOURNAL, 2017, 44 (02): : 343 - 358
  • [34] General congruences modulo 5 and 7 for colour partitions
    Nipen Saikia
    Chayanika Boruah
    The Journal of Analysis, 2021, 29 : 917 - 926
  • [35] Infinite families of congruences modulo 9 for 9-regular partitions
    Chen, Na
    Li, Xiaorong
    Yao, Olivia X. M.
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2020, 63 (02): : 163 - 172
  • [36] Arithmetic properties of partitions with odd parts distinct
    Hirschhorn, Michael D.
    Sellers, James A.
    RAMANUJAN JOURNAL, 2010, 22 (03): : 273 - 284
  • [37] Arithmetic properties of partitions with odd parts distinct
    Michael D. Hirschhorn
    James A. Sellers
    The Ramanujan Journal, 2010, 22 : 273 - 284
  • [38] Congruences for the number of partitions and bipartitions with distinct even parts
    Dai, Haobo
    DISCRETE MATHEMATICS, 2015, 338 (03) : 133 - 138
  • [39] ON THE RAMANUJAN-TYPE CONGRUENCES MODULO 8 FOR THE OVERPARTITIONS INTO ODD PARTS
    Merca, Mircea
    QUAESTIONES MATHEMATICAE, 2022, 45 (10) : 1567 - 1574
  • [40] Congruences modulo 11 for broken 5-diamond partitions
    Eric H. Liu
    James A. Sellers
    Ernest X. W. Xia
    The Ramanujan Journal, 2018, 46 : 151 - 159