New congruences modulo 5 and 9 for partitions with odd parts distinct

被引:7
|
作者
Fang, Houqing [1 ]
Xue, Fanggang [1 ]
Yao, Olivia X. M. [1 ]
机构
[1] Jiangsu Univ, Dept Math, Zhenjiang 212013, Jiangsu, Peoples R China
基金
美国国家科学基金会;
关键词
Congruence; partition; odd parts distinct; theta function; sum of triangular numbers; CONJECTURES; SQUARES; NUMBER; SUMS; SUN;
D O I
10.2989/16073606.2019.1653394
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let pod(n) denote the number of partitions of an integer n wherein the odd parts are distinct. Recently, a number of congruences for pod(n) have been established. In this paper, we establish the generating function of pod(5n + 2) and then prove new infinite families of congruences modulo 5 and 9 for pod(n) by using the formulas for t(3)(n) and t(5)(n), where t(k) (n) is the number of representations of n as a sum of k triangular numbers. In particular, we generalize a congruence for pod(n) due to Radu and Sellers.
引用
收藏
页码:1573 / 1586
页数:14
相关论文
共 50 条
  • [41] Congruences modulo powers of 5 for k-colored partitions
    Tang, Dazhao
    JOURNAL OF NUMBER THEORY, 2018, 187 : 198 - 214
  • [42] Congruences modulo 11 for broken 5-diamond partitions
    Liu, Eric H.
    Sellers, James A.
    Xia, Ernest X. W.
    RAMANUJAN JOURNAL, 2018, 46 (01): : 151 - 159
  • [43] On 3-regular partitions with odd parts distinct
    Gireesh, D. S.
    Hirschhorn, M. D.
    Naika, M. S. Mahadeva
    RAMANUJAN JOURNAL, 2017, 44 (01): : 227 - 236
  • [44] On 3-regular partitions with odd parts distinct
    D. S. Gireesh
    M. D. Hirschhorn
    M. S. Mahadeva Naika
    The Ramanujan Journal, 2017, 44 : 227 - 236
  • [45] New congruences modulo 2, 4, and 8 for the number of tagged parts over the partitions with designated summands
    Nayandeep Deka Baruah
    Mandeep Kaur
    The Ramanujan Journal, 2020, 52 : 253 - 274
  • [46] New congruences modulo 2, 4, and 8 for the number of tagged parts over the partitions with designated summands
    Baruah, Nayandeep Deka
    Kaur, Mandeep
    RAMANUJAN JOURNAL, 2020, 52 (02): : 253 - 274
  • [47] NEW CONGRUENCES AND DENSITY RESULTS FOR t-REGULAR PARTITIONS WITH DISTINCT EVEN PARTS
    Singh, Ajit
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2024, 54 (06) : 1715 - 1731
  • [48] Congruences modulo 16, 32 and 64 for bipartitions with distinct even parts
    Liu, Eric H.
    Yao, Olivia X. M.
    Zhao, Tao Yan
    ARS COMBINATORIA, 2018, 140 : 301 - 310
  • [49] NEW CONGRUENCES MODULO 5 FOR OVERPARTITIONS
    Zhao, Tao Yan
    Jin, Lily J.
    COLLOQUIUM MATHEMATICUM, 2016, 145 (02) : 285 - 290
  • [50] Congruences for the number of 4-tuple partitions with distinct even parts
    Dai, Haobo
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2014, 10 (08) : 2037 - 2043