New congruences modulo 5 and 9 for partitions with odd parts distinct

被引:7
|
作者
Fang, Houqing [1 ]
Xue, Fanggang [1 ]
Yao, Olivia X. M. [1 ]
机构
[1] Jiangsu Univ, Dept Math, Zhenjiang 212013, Jiangsu, Peoples R China
基金
美国国家科学基金会;
关键词
Congruence; partition; odd parts distinct; theta function; sum of triangular numbers; CONJECTURES; SQUARES; NUMBER; SUMS; SUN;
D O I
10.2989/16073606.2019.1653394
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let pod(n) denote the number of partitions of an integer n wherein the odd parts are distinct. Recently, a number of congruences for pod(n) have been established. In this paper, we establish the generating function of pod(5n + 2) and then prove new infinite families of congruences modulo 5 and 9 for pod(n) by using the formulas for t(3)(n) and t(5)(n), where t(k) (n) is the number of representations of n as a sum of k triangular numbers. In particular, we generalize a congruence for pod(n) due to Radu and Sellers.
引用
收藏
页码:1573 / 1586
页数:14
相关论文
共 50 条
  • [21] SOME NEW INFINITE FAMILIES OF CONGRUENCES MODULO 3 FOR OVERPARTITIONS INTO ODD PARTS
    Xia, Ernest X. W.
    COLLOQUIUM MATHEMATICUM, 2016, 142 (02) : 255 - 266
  • [22] Congruences for 9-regular partitions modulo 3
    Cui, Su-Ping
    Gu, Nancy S. S.
    RAMANUJAN JOURNAL, 2015, 38 (03): : 503 - 512
  • [23] Congruences for 9-regular partitions modulo 3
    William J. Keith
    The Ramanujan Journal, 2014, 35 : 157 - 164
  • [24] Congruences for 9-regular partitions modulo 3
    Keith, William J.
    RAMANUJAN JOURNAL, 2014, 35 (01): : 157 - 164
  • [25] Congruences for 9-regular partitions modulo 3
    Su-Ping Cui
    Nancy S. S. Gu
    The Ramanujan Journal, 2015, 38 : 503 - 512
  • [26] New congruences modulo 5 for the number of 2-color partitions
    Ahmed, Zakir
    Baruah, Nayandeep Deka
    Dastidar, Manosij Ghosh
    JOURNAL OF NUMBER THEORY, 2015, 157 : 184 - 198
  • [27] Arithmetic Properties of 9-Regular Partitions with Distinct Odd Parts
    B. Hemanthkumar
    H. S. Sumanth Bharadwaj
    M. S. Mahadeva Naika
    Acta Mathematica Vietnamica, 2019, 44 : 797 - 811
  • [28] Arithmetic Properties of 9-Regular Partitions with Distinct Odd Parts
    Hemanthkumar, B.
    Bharadwaj, H. S. Sumanth
    Naika, M. S. Mahadeva
    ACTA MATHEMATICA VIETNAMICA, 2019, 44 (03) : 797 - 811
  • [29] CONGRUENCES MODULO POWERS OF 2 FOR OVERPARTITION PAIRS INTO ODD PARTS
    Ahmed, Zakir
    Barman, Rupam
    Ray, Chiranjit
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (02) : 471 - 487
  • [30] New congruences modulo powers of 2 and 3 for 9-regular partitions
    Yao, Olivia X. M.
    JOURNAL OF NUMBER THEORY, 2014, 142 : 89 - 101