New congruences modulo 5 and 9 for partitions with odd parts distinct

被引:7
|
作者
Fang, Houqing [1 ]
Xue, Fanggang [1 ]
Yao, Olivia X. M. [1 ]
机构
[1] Jiangsu Univ, Dept Math, Zhenjiang 212013, Jiangsu, Peoples R China
基金
美国国家科学基金会;
关键词
Congruence; partition; odd parts distinct; theta function; sum of triangular numbers; CONJECTURES; SQUARES; NUMBER; SUMS; SUN;
D O I
10.2989/16073606.2019.1653394
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let pod(n) denote the number of partitions of an integer n wherein the odd parts are distinct. Recently, a number of congruences for pod(n) have been established. In this paper, we establish the generating function of pod(5n + 2) and then prove new infinite families of congruences modulo 5 and 9 for pod(n) by using the formulas for t(3)(n) and t(5)(n), where t(k) (n) is the number of representations of n as a sum of k triangular numbers. In particular, we generalize a congruence for pod(n) due to Radu and Sellers.
引用
收藏
页码:1573 / 1586
页数:14
相关论文
共 50 条
  • [1] Congruences for partitions with odd parts distinct modulo 5
    Cui, Su-Ping
    Gu, Wen Xiang
    Ma, Zhen Sheng
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (07) : 2151 - 2159
  • [2] New Congruences for Partitions where the Odd Parts are Distinct
    Wang, Liuquan
    JOURNAL OF INTEGER SEQUENCES, 2015, 18 (04)
  • [3] New infinite families of congruences modulo 8 for partitions with even parts distinct
    Xia, Ernest X. W.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (04):
  • [4] CONGRUENCES MODULO 5 FOR PARTITIONS INTO AT MOST FOUR PARTS
    Hirschhorn, Michael D.
    FIBONACCI QUARTERLY, 2018, 56 (01): : 32 - 37
  • [5] Ramanujan-type congruences modulo 4 for partitions into distinct parts
    Merca, Mircea
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2022, 30 (03): : 185 - 199
  • [6] A CONJECTURE OF MERCA ON CONGRUENCES MODULO POWERS OF 2 FOR PARTITIONS INTO DISTINCT PARTS
    Du, Julia Q. D.
    Tang, Dazhao
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024, 109 (01) : 26 - 36
  • [7] Partitions into Distinct Parts Modulo Powers of 5
    Chern, Shane
    Hirschhorn, Michael D.
    ANNALS OF COMBINATORICS, 2019, 23 (3-4) : 659 - 682
  • [8] Partitions into Distinct Parts Modulo Powers of 5
    Shane Chern
    Michael D. Hirschhorn
    Annals of Combinatorics, 2019, 23 : 659 - 682
  • [9] Internal Congruences Modulo Powers of 5 for Partition k-Tuples with Odd Parts Distinct
    Tang, Dazhao
    EXPERIMENTAL MATHEMATICS, 2025, 34 (01) : 72 - 86
  • [10] CONGRUENCES FOR 5-REGULAR PARTITIONS WITH ODD PARTS OVERLINED
    Naika, M. S. Mahadeva
    Harishkumar, T.
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 15 (3A): : 445 - 465