A CONJECTURE OF MERCA ON CONGRUENCES MODULO POWERS OF 2 FOR PARTITIONS INTO DISTINCT PARTS

被引:0
|
作者
Du, Julia Q. D. [1 ]
Tang, Dazhao [2 ]
机构
[1] Hebei Normal Univ, Hebei Int Joint Res Ctr Math & Interdisciplinary S, Sch Math Sci, Shijiazhuang 050024, Peoples R China
[2] Chongqing Normal Univ, Sch Math Sci, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金;
关键词
congruences; internal congruences; partitions; distinct parts; modular forms;
D O I
10.1017/S0004972723000229
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Q(n) denote the number of partitions of n into distinct parts. Merca ['Ramanujan-type congruences modulo 4 for partitions into distinct parts', An. St. Univ. Ovidius Constan,ta 30(3) (2022), 185-199] derived some congruences modulo 4 and 8 for Q(n) and posed a conjecture on congruences modulo powers of 2 enjoyed by Q(n). We present an approach which can be used to prove a family of internal congruence relations modulo powers of 2 concerning Q(n). As an immediate consequence, we not only prove Merca's conjecture, but also derive many internal congruences modulo powers of 2 satisfied by Q(n). Moreover, we establish an infinite family of congruence relations modulo 4 for Q(n).
引用
收藏
页码:26 / 36
页数:11
相关论文
共 50 条
  • [1] Partitions into Distinct Parts Modulo Powers of 5
    Chern, Shane
    Hirschhorn, Michael D.
    ANNALS OF COMBINATORICS, 2019, 23 (3-4) : 659 - 682
  • [2] Partitions into Distinct Parts Modulo Powers of 5
    Shane Chern
    Michael D. Hirschhorn
    Annals of Combinatorics, 2019, 23 : 659 - 682
  • [3] Congruences for partitions with odd parts distinct modulo 5
    Cui, Su-Ping
    Gu, Wen Xiang
    Ma, Zhen Sheng
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (07) : 2151 - 2159
  • [4] The number of partitions into distinct parts modulo powers of 5
    Lovejoy, J
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2003, 35 : 41 - 46
  • [5] Ramanujan-type congruences modulo 4 for partitions into distinct parts
    Merca, Mircea
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2022, 30 (03): : 185 - 199
  • [6] New congruences modulo 5 and 9 for partitions with odd parts distinct
    Fang, Houqing
    Xue, Fanggang
    Yao, Olivia X. M.
    QUAESTIONES MATHEMATICAE, 2020, 43 (11) : 1573 - 1586
  • [7] An infinite family of internal congruences modulo powers of 2 for partitions into odd parts with designated summands
    Chern, Shane
    Sellers, James A.
    ACTA ARITHMETICA, 2024, 215 (01) : 43 - 64
  • [8] New infinite families of congruences modulo 8 for partitions with even parts distinct
    Xia, Ernest X. W.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (04):
  • [9] Congruences modulo powers of 2 for generalized Frobenius partitions with six colors
    Cui, Su-Ping
    Gu, Nancy S. S.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2019, 15 (06) : 1173 - 1181
  • [10] CONGRUENCES MODULO POWERS OF 2 FOR OVERPARTITION PAIRS INTO ODD PARTS
    Ahmed, Zakir
    Barman, Rupam
    Ray, Chiranjit
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (02) : 471 - 487