A new characterization and estimation of the zero-bias bandwidth

被引:2
|
作者
Sain, SR [1 ]
机构
[1] Univ Colorado, Dept Math, Denver, CO 80217 USA
关键词
kernel density estimation; plug-in variable bandwidth;
D O I
10.1111/1467-842X.00259
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It is well established that bandwidths exist that can yield an unbiased non-parametric kernel density estimate at points in particular regions (e.g. convex regions) of the underlying density. These zero-bias bandwidths have superior theoretical properties, including a 1/n convergence rate of the mean squared error. However, the explicit functional form of the zero-bias bandwidth has remained elusive. It is difficult to estimate these bandwidths and virtually impossible to achieve the higher-order rate in practice. This paper addresses these issues by taking a fundamentally different approach to the asymptotics of the kernel density estimator to derive a functional approximation to the zero-bias bandwidth. It develops a simple approximation algorithm that focuses on estimating these zero-bias bandwidths in the tails of densities where the convexity conditions favourable to the. existence of the zero-bias bandwidths are more natural. The estimated bandwidths yield density estimates with mean squared error that is O(n(-4/5)), the same rate as the mean squared error of density estimates with other choices of local bandwidths. Simulation studies and an illustrative example with air pollution data show that these estimated zero-bias bandwidths outperform other global and local bandwidth estimators in estimating-points in the tails of densities.
引用
收藏
页码:29 / 42
页数:14
相关论文
共 50 条
  • [11] Zero-bias anomaly in disordered wires
    Mishchenko, EG
    Andreev, AV
    Glazman, LI
    PHYSICAL REVIEW LETTERS, 2001, 87 (24) : 246801 - 1
  • [12] EXCHANGE MODEL OF ZERO-BIAS TUNNELING ANOMALIES
    APPELBAUM, JA
    PHYSICAL REVIEW, 1967, 154 (03): : 633 - +
  • [13] Zero-Bias Spin Separation in Quantum Wells
    Ganichev, S. D.
    Bel'kov, V. V.
    Tarasenko, S. A.
    Danilov, S. N.
    Giglberger, S.
    Hoffmann, Ch.
    Ivchenko, E. L.
    Weiss, D.
    Gerl, C.
    Schuh, D.
    Wegscheider, W.
    Prettl, W.
    CONFERENCE DIGEST OF THE 2006 JOINT 31ST INTERNATIONAL CONFERENCE ON INFRARED AND MILLIMETER WAVES AND 14TH INTERNATIONAL CONFERENCE ON TERAHERTZ ELECTRONICS, 2006, : 34 - 34
  • [14] THRESHOLD TEMPERATURE OF ZERO-BIAS CONDUCTANCE PEAK AND ZERO-BIAS CONDUCTANCE DIP IN DIFFUSIVE NORMAL METAL SUPERCONDUCTOR JUNCTIONS
    Shigeta, Iduru
    Yokoyama, Takehito
    Asano, Yasuhiro
    Ichikawa, Fusao
    Tanaka, Yukio
    CONTROLLABLE QUANTUM STATES: MESOSCOPIC SUPERCONDUCTIVITY AND SPRINTRONICS, 2008, : 111 - +
  • [15] RF Characterization of Zero-Bias Planar Nanodiodes Coupled with a Narrowband Dipole Antenna
    Kasjoo, Shahrir R.
    Singh, Awn K.
    Song, Aimin M.
    PROCEEDINGS OF THE 2015 IEEE INTERNATIONAL CONFERENCE ON ELECTRON DEVICES AND SOLID-STATE CIRCUITS (EDSSC), 2015, : 601 - 602
  • [16] ZERO-BIAS TUNNELING ANOMALY AT A VORTEX CORE
    OVERHAUSER, AW
    DAEMEN, LL
    PHYSICAL REVIEW LETTERS, 1989, 62 (14) : 1691 - 1693
  • [17] TUNNELING, ZERO-BIAS ANOMALIES, AND SMALL SUPERCONDUCTORS
    ZELLER, HR
    GIAEVER, I
    PHYSICAL REVIEW, 1969, 181 (02): : 789 - &
  • [18] Operating principles of zero-bias retinomorphic sensors
    Labram, John G.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2023, 56 (06)
  • [19] ZERO-BIAS CHOLESTEROL AND TRIGLYCERIDE PROFICIENCY SURVEY
    STRATTON, MD
    PERNA, VP
    CLAPSHAW, PA
    CLINICAL CHEMISTRY, 1990, 36 (10) : 1855 - 1856
  • [20] Zero-bias photocurrent in ferromagnetic topological insulator
    N. Ogawa
    R. Yoshimi
    K. Yasuda
    A. Tsukazaki
    M. Kawasaki
    Y. Tokura
    Nature Communications, 7