A new characterization and estimation of the zero-bias bandwidth

被引:2
|
作者
Sain, SR [1 ]
机构
[1] Univ Colorado, Dept Math, Denver, CO 80217 USA
关键词
kernel density estimation; plug-in variable bandwidth;
D O I
10.1111/1467-842X.00259
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It is well established that bandwidths exist that can yield an unbiased non-parametric kernel density estimate at points in particular regions (e.g. convex regions) of the underlying density. These zero-bias bandwidths have superior theoretical properties, including a 1/n convergence rate of the mean squared error. However, the explicit functional form of the zero-bias bandwidth has remained elusive. It is difficult to estimate these bandwidths and virtually impossible to achieve the higher-order rate in practice. This paper addresses these issues by taking a fundamentally different approach to the asymptotics of the kernel density estimator to derive a functional approximation to the zero-bias bandwidth. It develops a simple approximation algorithm that focuses on estimating these zero-bias bandwidths in the tails of densities where the convexity conditions favourable to the. existence of the zero-bias bandwidths are more natural. The estimated bandwidths yield density estimates with mean squared error that is O(n(-4/5)), the same rate as the mean squared error of density estimates with other choices of local bandwidths. Simulation studies and an illustrative example with air pollution data show that these estimated zero-bias bandwidths outperform other global and local bandwidth estimators in estimating-points in the tails of densities.
引用
收藏
页码:29 / 42
页数:14
相关论文
共 50 条
  • [21] Zero-bias anomalies in electrochemically fabricated nanojunctions
    Yu, LH
    Natelson, D
    APPLIED PHYSICS LETTERS, 2003, 82 (14) : 2332 - 2334
  • [22] Tunneling zero-bias anomaly in the quasiballistic regime
    Rudin, A. M.
    Aleiner, I. L.
    Glazman, L. I.
    Physical Review B: Condensed Matter, 55 (15):
  • [23] Honing in on a topological zero-bias conductance peak
    Pal, Subhajit
    Benjamin, Colin
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2024, 36 (03)
  • [24] Ultrafast zero-bias photocurrent in GeS nanosheets
    Kushnir, Kateryna
    Wang, Mengjing
    Fitzgerald, Patrick
    Koski, Kristie J.
    Titova, Lyubov V.
    ULTRAFAST PHENOMENA AND NANOPHOTONICS XXII, 2018, 10530
  • [25] Zero-bias photocurrent in ferromagnetic topological insulator
    Ogawa, N.
    Yoshimi, R.
    Yasuda, K.
    Tsukazaki, A.
    Kawasaki, M.
    Tokura, Y.
    NATURE COMMUNICATIONS, 2016, 7
  • [26] Tunneling zero-bias anomaly in the quasiballistic regime
    Rudin, AM
    Aleiner, IL
    Glazman, LI
    PHYSICAL REVIEW B, 1997, 55 (15): : 9322 - 9325
  • [27] Zero-bias anomaly in ferromagnetic Ni nanoconstrictions
    Ienaga, K.
    Nakashima, N.
    Inagaki, Y.
    Tsujii, H.
    Honda, S.
    Kimura, T.
    Kawae, T.
    PHYSICAL REVIEW B, 2012, 86 (06):
  • [28] ZERO-BIAS SUPERCURRENT FLOW WITH ARBITRARY SCATTERING
    FERRER, J
    SOLS, F
    PHYSICA B, 1994, 194 : 1751 - 1752
  • [29] Nonequilibrium zero-bias anomaly in disordered metals
    Gutman, D. B.
    Gefen, Yuval
    Mirlin, A. D.
    PHYSICAL REVIEW LETTERS, 2008, 100 (08)
  • [30] Zero-bias locally adaptive density estimators
    Sain, SR
    Scott, DW
    SCANDINAVIAN JOURNAL OF STATISTICS, 2002, 29 (03) : 441 - 460