A new characterization and estimation of the zero-bias bandwidth

被引:2
|
作者
Sain, SR [1 ]
机构
[1] Univ Colorado, Dept Math, Denver, CO 80217 USA
关键词
kernel density estimation; plug-in variable bandwidth;
D O I
10.1111/1467-842X.00259
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It is well established that bandwidths exist that can yield an unbiased non-parametric kernel density estimate at points in particular regions (e.g. convex regions) of the underlying density. These zero-bias bandwidths have superior theoretical properties, including a 1/n convergence rate of the mean squared error. However, the explicit functional form of the zero-bias bandwidth has remained elusive. It is difficult to estimate these bandwidths and virtually impossible to achieve the higher-order rate in practice. This paper addresses these issues by taking a fundamentally different approach to the asymptotics of the kernel density estimator to derive a functional approximation to the zero-bias bandwidth. It develops a simple approximation algorithm that focuses on estimating these zero-bias bandwidths in the tails of densities where the convexity conditions favourable to the. existence of the zero-bias bandwidths are more natural. The estimated bandwidths yield density estimates with mean squared error that is O(n(-4/5)), the same rate as the mean squared error of density estimates with other choices of local bandwidths. Simulation studies and an illustrative example with air pollution data show that these estimated zero-bias bandwidths outperform other global and local bandwidth estimators in estimating-points in the tails of densities.
引用
收藏
页码:29 / 42
页数:14
相关论文
共 50 条
  • [41] Zero-Bias Shapiro Steps in Asymmetric Pinning Nanolandscapes
    O. V. Dobrovolskiy
    V. V. Sosedkin
    R. Sachser
    V. A. Shklovskij
    R. V. Vovk
    M. Huth
    Journal of Superconductivity and Novel Magnetism, 2017, 30 : 735 - 741
  • [42] Zero-bias anomaly in finite-size systems
    Kamenev, A
    Gefen, Y
    PHYSICAL REVIEW B, 1996, 54 (08): : 5428 - 5437
  • [43] Zero-bias anomaly in the tunneling density of states of graphene
    Mariani, Eros
    Glazman, Leonid I.
    Kamenev, Alex
    von Oppen, Felix
    PHYSICAL REVIEW B, 2007, 76 (16):
  • [44] PROBLEM OF ZERO-BIAS ANOMALIES IN TUNNELING SPECTROSCOPY OF SUPERCONDUCTORS
    KAUFMANN, FP
    HOLZER, P
    ZEITSCHRIFT FUR PHYSIK, 1971, 241 (04): : 308 - &
  • [45] Zero-bias anomaly in CrO2 junctions
    Sokolov, A
    Yang, CS
    Yuan, L
    Liou, SH
    Cheng, RH
    Jeong, HK
    Komesu, T
    Xu, B
    Borca, CN
    Dowben, PA
    Doudin, B
    EUROPHYSICS LETTERS, 2002, 58 (03): : 448 - 454
  • [46] Thermal dependence of the zero-bias conductance through a nanostructure
    Seridonio, A. C.
    Yoshida, M.
    Oliveira, L. N.
    EPL, 2009, 86 (06)
  • [47] Zero-bias anomaly in p-wave superconductor
    Rosenstein, Baruch
    Shapiro, B. Ya.
    Shapiro, I.
    Li, Dingping
    EPL, 2015, 112 (03)
  • [48] Zeeman splitting of zero-bias anomaly in Luttinger liquids
    Shytov, AV
    Glazman, LI
    Starykh, OA
    PHYSICAL REVIEW LETTERS, 2003, 91 (04)
  • [49] ZERO-BIAS ANOMALIES IN NORMAL METAL TUNNEL JUNCTIONS
    ROWELL, JM
    SHEN, LYL
    PHYSICAL REVIEW LETTERS, 1966, 17 (01) : 15 - &
  • [50] New InGaAs THz Schottky detectors with nano we contact for zero-bias operation
    Hajo, Ahid S.
    Yilmazoglu, Oktay
    Kueppers, Franko
    2018 43RD INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), 2018,