A MONOIDAL STRUCTURE ON THE CATEGORY OF RELATIVE HOM-HOPF MODULES

被引:0
|
作者
Wang, Xing [1 ]
Wang, Dingguo [1 ]
Zhang, Xiaohui [1 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
monoidal category; relative Hom-Hopf module; Hom-Yetter-Drinfeld module; braided Hom-bialgebra; DRINFELD TWISTS; ALGEBRAS;
D O I
10.4064/cm8099-4-2020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We first define a Hom-Yetter-Drinfeld category with a new compatibility relation and prove that it is a pre-braided monoidal category. Secondly, let (H,beta) be a Hom-bialgebra, and (A, alpha) a left (H,beta)-comodule algebra. Assume further that (A,alpha) is also a Hom-coalgebra, with a not necessarily Hom-associative or Hom-unital left (H,beta)-action which commutes with alpha,beta. Then we define a right (A,alpha)-action on the tensor product of two relative Hom-Hopf modules. Our main result is that this action gives a monoidal structure on the category of relative Hom-Hopf modules if and only if (A,alpha) is a braided Hom-bialgebra in the category of Hom-Yetter-Drinfeld modules over (H,beta). Finally, we give some examples and discuss the monoidal Hom-Doi-Hopf datum.
引用
收藏
页码:63 / 89
页数:27
相关论文
共 50 条
  • [31] Hom-Hopf Algebras Arising From (Co)-Braided Hom-Hopf Algebras
    Jia, Ling
    Chen, Xiaoyuan
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2016, 40 (04) : 511 - 527
  • [32] The Coalgebra Structure over Hom-Hopf Algebra
    Naifeng ZHENG
    Journal of Mathematical Research with Applications, 2015, 35 (06) : 605 - 612
  • [33] Yetter-Drinfeld Modules forWeak Hom-Hopf Algebras
    Guo, Shuangjian
    Ke, Yuanyuan
    FILOMAT, 2017, 31 (13) : 4069 - 4084
  • [34] Hom-Hopf元(映射)与Hom-Hopf(Pentagon)方程的解
    焦争鸣
    黄功宇
    河南师范大学学报(自然科学版), 2016, 44 (03) : 1 - 6
  • [35] Constructing new braided T-categories over monoidal Hom-Hopf algebras
    You, Miman
    Wang, Shuanhong
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (11)
  • [36] QUASITRIANGULAR HOM-HOPF ALGEBRAS
    Chen, Yuanyuan
    Wang, Zhongwei
    Zhang, Liangyun
    COLLOQUIUM MATHEMATICUM, 2014, 137 (01) : 67 - 88
  • [37] Making the Category of Doi-Hopf Modules into a Braided Monoidal Category
    Caenepeel S.
    Van Oystaeyen F.
    Zhou B.
    Algebras and Representation, 1998, 1 (1) : 75 - 96
  • [38] THE STRUCTURE THEOREM OF HOM-HOPF BIMODULES AND ITS APPLICATIONS
    Zheng, Huihui
    Chen, Yuanyuan
    Zhang, Liangyun
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2021, 30 : 78 - 98
  • [39] Hom-ideal structure of monoidal Hom-algebras in a category
    Dong, Lihong
    Wang, Shengxiang
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2015, 14 (05)
  • [40] Monoidal Hom-Hopf群-余代数上的Drinfeld量子偶(英文)
    游弥漫
    周楠
    数学杂志, 2017, 37 (01) : 63 - 73