Yetter-Drinfeld Modules forWeak Hom-Hopf Algebras

被引:1
|
作者
Guo, Shuangjian [1 ]
Ke, Yuanyuan [2 ]
机构
[1] Guizhou Univ Finance & Econ, Sch Math & Stat, Guiyang 550025, Guizhou, Peoples R China
[2] Jianghan Univ, Sch Math & Comp Sci, Wuhan 430056, Hubei, Peoples R China
关键词
Yetter-Drinfeld module; braided monoidal category; (co)quasitriangular; weak-Hom type entwined-module; LIE-ALGEBRAS; DEFORMATIONS;
D O I
10.2298/FIL1713069G
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to define and study Yetter-Drinfeld modules over weak Hom-Hopf algebras. We show that the category HWYDH of Yetter-Drinfeld modules with bijective structure maps over weak Hom-Hopf algebras is a rigid category and a braided monoidal category, and obtain a new solution of quantum Hom-Yang-Baxter equation. It turns out that, If H is quasitriangular (respectively, coquasitriangular) weak Hom-Hopf algebras, the category of modules (respectively, comodules) with bijective structure maps over H is a braided monoidal subcategory of the category HWYDH of Yetter-Drinfeld modules over weak Hom-Hopf algebras.
引用
收藏
页码:4069 / 4084
页数:16
相关论文
共 50 条