Yetter-Drinfeld Modules forWeak Hom-Hopf Algebras

被引:1
|
作者
Guo, Shuangjian [1 ]
Ke, Yuanyuan [2 ]
机构
[1] Guizhou Univ Finance & Econ, Sch Math & Stat, Guiyang 550025, Guizhou, Peoples R China
[2] Jianghan Univ, Sch Math & Comp Sci, Wuhan 430056, Hubei, Peoples R China
关键词
Yetter-Drinfeld module; braided monoidal category; (co)quasitriangular; weak-Hom type entwined-module; LIE-ALGEBRAS; DEFORMATIONS;
D O I
10.2298/FIL1713069G
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to define and study Yetter-Drinfeld modules over weak Hom-Hopf algebras. We show that the category HWYDH of Yetter-Drinfeld modules with bijective structure maps over weak Hom-Hopf algebras is a rigid category and a braided monoidal category, and obtain a new solution of quantum Hom-Yang-Baxter equation. It turns out that, If H is quasitriangular (respectively, coquasitriangular) weak Hom-Hopf algebras, the category of modules (respectively, comodules) with bijective structure maps over H is a braided monoidal subcategory of the category HWYDH of Yetter-Drinfeld modules over weak Hom-Hopf algebras.
引用
收藏
页码:4069 / 4084
页数:16
相关论文
共 50 条
  • [41] The Monoidal Category of Yetter-Drinfeld Modules over a Weak Braided Hopf Algebra
    Alonso Alvarez, J. N.
    Fernandez Vilaboa, J. M.
    Gonzalez Rodriguez, R.
    Soneira Calvo, C.
    ALGEBRA COLLOQUIUM, 2015, 22 : 871 - 902
  • [42] Ribbon Yetter-Drinfeld modules and tangle invariants
    Habiro, Kazuo
    Kotorii, Yuka
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2023,
  • [43] Yetter-Drinfeld modules under cocycle twists
    Benkart, Georgia
    Pereira, Mariana
    Witherspoon, Sarah
    JOURNAL OF ALGEBRA, 2010, 324 (11) : 2990 - 3006
  • [44] THE STRUCTURE THEOREMS FOR YETTER-DRINFELD COMODULE ALGEBRAS
    Jia, Ling
    ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES, 2013, 20 : 31 - 42
  • [45] MONOIDAL HOM-HOPF ALGEBRAS
    Caenepeel, S.
    Goyvaerts, I.
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (06) : 2216 - 2240
  • [46] QUASITRIANGULAR HOM-HOPF ALGEBRAS
    Chen, Yuanyuan
    Wang, Zhongwei
    Zhang, Liangyun
    COLLOQUIUM MATHEMATICUM, 2014, 137 (01) : 67 - 88
  • [47] Yetter-Drinfeld modules over weak bialgebras
    Caenepeel S.
    Wang D.
    Yin Y.
    Annali dell’Università di Ferrara, 2005, 51 (1): : 69 - 98
  • [48] Anti-Yetter-Drinfeld Modules for Quasi-Hopf Algebras
    Kobyzev, Ivan
    Shapiro, Ilya
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2018, 14
  • [49] The Nichols Zoeller theorem for Hopf algebras in the category of Yetter Drinfeld modules
    Scharfschwerdt, B
    COMMUNICATIONS IN ALGEBRA, 2001, 29 (06) : 2481 - 2487
  • [50] 弱Hopf代数与Yetter-Drinfeld范畴
    耿世佼
    董丽红
    焦争鸣
    河南师范大学学报(自然科学版), 2009, 37 (05) : 18 - 21