A MONOIDAL STRUCTURE ON THE CATEGORY OF RELATIVE HOM-HOPF MODULES

被引:0
|
作者
Wang, Xing [1 ]
Wang, Dingguo [1 ]
Zhang, Xiaohui [1 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
monoidal category; relative Hom-Hopf module; Hom-Yetter-Drinfeld module; braided Hom-bialgebra; DRINFELD TWISTS; ALGEBRAS;
D O I
10.4064/cm8099-4-2020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We first define a Hom-Yetter-Drinfeld category with a new compatibility relation and prove that it is a pre-braided monoidal category. Secondly, let (H,beta) be a Hom-bialgebra, and (A, alpha) a left (H,beta)-comodule algebra. Assume further that (A,alpha) is also a Hom-coalgebra, with a not necessarily Hom-associative or Hom-unital left (H,beta)-action which commutes with alpha,beta. Then we define a right (A,alpha)-action on the tensor product of two relative Hom-Hopf modules. Our main result is that this action gives a monoidal structure on the category of relative Hom-Hopf modules if and only if (A,alpha) is a braided Hom-bialgebra in the category of Hom-Yetter-Drinfeld modules over (H,beta). Finally, we give some examples and discuss the monoidal Hom-Doi-Hopf datum.
引用
收藏
页码:63 / 89
页数:27
相关论文
共 50 条
  • [41] Hom-Hopf group coalgebras and braided T-categories obtained from Hom-Hopf algebras
    You, Miman
    Zhou, Nan
    Wang, Shuanhong
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (11)
  • [42] HOPF MODULES IN THE BRAIDED MONOIDAL CATEGORY M-L
    Yin, Yanmin
    Zhang, Mingchuan
    MATEMATICHE, 2011, 66 (01): : 81 - +
  • [43] Crossed Products of Hom-Hopf Algebras
    Lu, Daowei
    Li, Yizheng
    Guo, Shuangjian
    FILOMAT, 2020, 34 (04) : 1295 - 1313
  • [44] (θ, ω)-Twisted Radford's Hom-biproduct and π-Yetter-Drinfeld modules for Hom-Hopf algebras
    Fang, Xiao-Li
    Kim, Tae-Hwa
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (03)
  • [45] Drinfeld Codoubles of Hom-Hopf Algebras
    Zhang, Xiaohui
    Guo, Shuangjian
    Wang, Shengxiang
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2019, 29 (02)
  • [46] Cocycle deformations for Hom-Hopf algebras
    Alonso Alvarez, J. N.
    Fernandez Vilaboa, J. M.
    Gonzalez Rodriguez, R.
    JOURNAL OF ALGEBRA, 2022, 601 : 354 - 389
  • [47] GENERALIZED HOM-LIE STRUCTURE OF MONOIDAL HOM-ALGEBRAS IN A CATEGORY
    Dong, Lihong
    Huang, Ruifang
    Wang, Shengxiang
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (05)
  • [48] SOME RESULTS ABOUT HOM-COMODULE ALGEBRAS WITH HOM-HOPF MODULE STRUCTURE
    Dong, Lihong
    Xue, Shuan
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2019, 25 : 104 - 119
  • [49] Weak Hom-bialgebras and weak Hom-Hopf algebras
    Chebel, Zoheir
    Makhlouf, Abdenacer
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2018, 61 (01): : 23 - 38
  • [50] The functor HOM and the projectivity and injectivity of relative Hopf modules
    Zhu, JG
    Li, QS
    COMMUNICATIONS IN ALGEBRA, 2002, 30 (05) : 2553 - 2567