A MONOIDAL STRUCTURE ON THE CATEGORY OF RELATIVE HOM-HOPF MODULES

被引:0
|
作者
Wang, Xing [1 ]
Wang, Dingguo [1 ]
Zhang, Xiaohui [1 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
monoidal category; relative Hom-Hopf module; Hom-Yetter-Drinfeld module; braided Hom-bialgebra; DRINFELD TWISTS; ALGEBRAS;
D O I
10.4064/cm8099-4-2020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We first define a Hom-Yetter-Drinfeld category with a new compatibility relation and prove that it is a pre-braided monoidal category. Secondly, let (H,beta) be a Hom-bialgebra, and (A, alpha) a left (H,beta)-comodule algebra. Assume further that (A,alpha) is also a Hom-coalgebra, with a not necessarily Hom-associative or Hom-unital left (H,beta)-action which commutes with alpha,beta. Then we define a right (A,alpha)-action on the tensor product of two relative Hom-Hopf modules. Our main result is that this action gives a monoidal structure on the category of relative Hom-Hopf modules if and only if (A,alpha) is a braided Hom-bialgebra in the category of Hom-Yetter-Drinfeld modules over (H,beta). Finally, we give some examples and discuss the monoidal Hom-Doi-Hopf datum.
引用
收藏
页码:63 / 89
页数:27
相关论文
共 50 条