Foundations for Bayesian inference with engineered likelihood functions for robust amplitude estimation

被引:3
|
作者
Koh, Dax Enshan [1 ,2 ]
Wang, Guoming [3 ]
Johnson, Peter D. [1 ]
Cao, Yudong [1 ]
机构
[1] Zapata Comp Inc, 100 Fed St, Boston, MA 02110 USA
[2] ASTAR, Inst High Performance Comp, 1 Fusionopolis Way,16-16 Connexis, Singapore 138632, Singapore
[3] Zapata Comp Inc, 325 Front St West,Suite 300, Toronto, ON M5V 2Y1, Canada
关键词
D O I
10.1063/5.0042433
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present mathematical and conceptual foundations for the task of robust amplitude estimation using engineered likelihood functions (ELFs), a framework introduced by Wang et al. [PRX Quantum 2, 010346 (2021)] that uses Bayesian inference to enhance the rate of information gain in quantum sampling. These ELFs, which are obtained by choosing tunable parameters in a parametrized quantum circuit to minimize the expected posterior variance of an estimated parameter, play an important role in estimating the expectation values of quantum observables. We give a thorough characterization and analysis of likelihood functions arising from certain classes of quantum circuits and combine this with the tools of Bayesian inference to give a procedure for picking optimal ELF tunable parameters. Finally, we present numerical results to demonstrate the performance of ELFs. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:52
相关论文
共 50 条
  • [41] Local maximum likelihood estimation and inference
    Fan, JQ
    Farmen, M
    Gijbels, I
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1998, 60 : 591 - 608
  • [42] Robust Bayesian inference via γ-divergence
    Nakagawa, Tomoyuki
    Hashimoto, Shintaro
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (02) : 343 - 360
  • [43] Robust Maximum Likelihood Estimation
    Bertsimas, Dimitris
    Nohadani, Omid
    [J]. INFORMS JOURNAL ON COMPUTING, 2019, 31 (03) : 445 - 458
  • [44] Robust Bayesian inference on scale parameters
    Fernández, C
    Osiewalski, J
    Steel, MFJ
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2001, 77 (01) : 54 - 72
  • [45] Robust Bayesian inference in proxy SVARs
    Giacomini, Raffaella
    Kitagawa, Toru
    Read, Matthew
    [J]. JOURNAL OF ECONOMETRICS, 2022, 228 (01) : 107 - 126
  • [46] Robust Bayesian Inference via Coarsening
    Miller, Jeffrey W.
    Dunson, David B.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2019, 114 (527) : 1113 - 1125
  • [47] Robust empirical likelihood inference for longitudinal data
    Qin, Guoyou
    Bai, Yang
    Zhu, Zhongyi
    [J]. STATISTICS & PROBABILITY LETTERS, 2009, 79 (20) : 2101 - 2108
  • [48] Robust inference by influence functions
    Ronchetti, E
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1997, 57 (01) : 59 - 72
  • [49] Bayesian bootstrap inference via regression structure likelihood
    Heckelei, T
    Mittelhammer, RC
    [J]. ADVANCES IN ECONOMETRICS, 1996, 11 : 179 - 209
  • [50] BAYESIAN AND LIKELIHOOD INFERENCE FROM EQUALLY WEIGHTED MIXTURES
    LEONARD, T
    HSU, JSJ
    TSUI, KW
    MURRAY, JF
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1994, 46 (02) : 203 - 220