Foundations for Bayesian inference with engineered likelihood functions for robust amplitude estimation

被引:3
|
作者
Koh, Dax Enshan [1 ,2 ]
Wang, Guoming [3 ]
Johnson, Peter D. [1 ]
Cao, Yudong [1 ]
机构
[1] Zapata Comp Inc, 100 Fed St, Boston, MA 02110 USA
[2] ASTAR, Inst High Performance Comp, 1 Fusionopolis Way,16-16 Connexis, Singapore 138632, Singapore
[3] Zapata Comp Inc, 325 Front St West,Suite 300, Toronto, ON M5V 2Y1, Canada
关键词
D O I
10.1063/5.0042433
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present mathematical and conceptual foundations for the task of robust amplitude estimation using engineered likelihood functions (ELFs), a framework introduced by Wang et al. [PRX Quantum 2, 010346 (2021)] that uses Bayesian inference to enhance the rate of information gain in quantum sampling. These ELFs, which are obtained by choosing tunable parameters in a parametrized quantum circuit to minimize the expected posterior variance of an estimated parameter, play an important role in estimating the expectation values of quantum observables. We give a thorough characterization and analysis of likelihood functions arising from certain classes of quantum circuits and combine this with the tools of Bayesian inference to give a procedure for picking optimal ELF tunable parameters. Finally, we present numerical results to demonstrate the performance of ELFs. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:52
相关论文
共 50 条
  • [21] On reliability challenges of repairable systems using hierarchical bayesian inference and maximum likelihood estimation
    BahooToroody, Ahmad
    Abaei, Mohammad Mahdi
    Arzaghi, Ehsan
    Song, Guozheng
    De Carlo, Filippo
    Paltrinieri, Nicola
    Abbassi, Rouzbeh
    [J]. De Carlo, Filippo (filippo.decarlo@unifi.it), 1600, Institution of Chemical Engineers (135): : 157 - 165
  • [22] Inference functions in high dimensional Bayesian inference
    Lee, Juhee
    MacEachern, Steven N.
    [J]. STATISTICS AND ITS INTERFACE, 2014, 7 (04) : 477 - 486
  • [23] Bayesian spectral likelihood for hydrological parameter inference
    Schaefli, Bettina
    Kavetski, Dmitri
    [J]. WATER RESOURCES RESEARCH, 2017, 53 (08) : 6857 - 6884
  • [24] Generalized Bayesian Inference for Discrete Intractable Likelihood
    Matsubara, Takuo
    Knoblauch, Jeremias
    Briol, Francois-Xavier
    Oates, Chris. J.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023,
  • [25] Advances in Statistical Inference: Bayesian and likelihood interplay
    Fulvio De Santis
    Laura Ventura
    [J]. METRON, 2014, 72 (2) : 123 - 124
  • [26] Generalized Bayesian likelihood-free inference
    Pacchiardi, Lorenzo
    Khoo, Sherman
    Dutta, Ritabrata
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2024, 18 (02): : 3628 - 3686
  • [27] The boxer, the wrestler, and the coin flip: A paradox of robust Bayesian inference and belief functions
    Gelman, A
    [J]. AMERICAN STATISTICIAN, 2006, 60 (02): : 146 - 150
  • [28] Bayesian inference in quantile functions
    Nair, N. Unnikrishnan
    Sankaran, P. G.
    Dileepkumar, M.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (14) : 4877 - 4889
  • [29] Advances in Statistical Inference: Bayesian and likelihood interplay
    De Santis, Fulvio
    Ventura, Laura
    [J]. METRON-INTERNATIONAL JOURNAL OF STATISTICS, 2014, 72 (02): : 123 - 124
  • [30] Bayesian inference for psychometric functions
    Kuss, M
    Jäkel, F
    Wichmann, FA
    [J]. JOURNAL OF VISION, 2005, 5 (05): : 478 - 492