Robust Bayesian Inference via Coarsening

被引:86
|
作者
Miller, Jeffrey W. [1 ]
Dunson, David B. [2 ]
机构
[1] Harvard Univ, Dept Biostat, Boston, MA 02138 USA
[2] Duke Univ, Dept Stat Sci, Durham, NC USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Clustering; Model error; Model misspecification; Power likelihood; Relative entropy; Tempering; FLOW-CYTOMETRY;
D O I
10.1080/01621459.2018.1469995
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The standard approach to Bayesian inference is based on the assumption that the distribution of the data belongs to the chosen model class. However, even a small violation of this assumption can have a large impact on the outcome of a Bayesian procedure. We introduce a novel approach to Bayesian inference that improves robustness to small departures from the model: rather than conditioning on the event that the observed data are generated by the model, one conditions on the event that the model generates data close to the observed data, in a distributional sense. When closeness is defined in terms of relative entropy, the resulting "coarsened" posterior can be approximated by simply tempering the likelihood-that is, by raising the likelihood to a fractional power-thus, inference can usually be implemented via standard algorithms, and one can even obtain analytical solutions when using conjugate priors. Some theoretical properties are derived, and we illustrate the approach with real and simulated data using mixture models and autoregressive models of unknown order. Supplementary materials for this article are available online.
引用
收藏
页码:1113 / 1125
页数:13
相关论文
共 50 条
  • [1] Robust Bayesian inference via γ-divergence
    Nakagawa, Tomoyuki
    Hashimoto, Shintaro
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (02) : 343 - 360
  • [2] Impact of nonignorable coarsening on Bayesian inference
    Zhang, Jiameng
    Heitjan, Daniel F.
    [J]. BIOSTATISTICS, 2007, 8 (04) : 722 - 743
  • [3] Scalable and Robust Bayesian Inference via the Median Posterior
    Minsker, Stanislav
    Srivastava, Sanvesh
    Lin, Lizhen
    Dunson, David B.
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 2), 2014, 32 : 1656 - 1664
  • [4] Robust Distance Metric Learning via Bayesian Inference
    Wang D.
    Tan X.
    [J]. IEEE Transactions on Image Processing, 2018, 27 (03) : 1542 - 1553
  • [5] Robust and Private Bayesian Inference
    Dimitrakakis, Christos
    Nelson, Blaine
    Mitrokotsa, Aikaterini
    Rubinstein, Benjamin I. P.
    [J]. ALGORITHMIC LEARNING THEORY (ALT 2014), 2014, 8776 : 291 - 305
  • [6] Robust approximate Bayesian inference
    Ruli, Erlis
    Sartori, Nicola
    Ventura, Laura
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2020, 205 : 10 - 22
  • [7] Robust determination of cubic elastic constants via nanoindentation and Bayesian inference
    Idrissi, Y.
    Richeton, T.
    Texier, D.
    Berbenni, S.
    Lecomte, J.-S.
    [J]. Acta Materialia, 2024, 281
  • [8] Robust Bayesian inference on scale parameters
    Fernández, C
    Osiewalski, J
    Steel, MFJ
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2001, 77 (01) : 54 - 72
  • [9] Robust Bayesian inference in proxy SVARs
    Giacomini, Raffaella
    Kitagawa, Toru
    Read, Matthew
    [J]. JOURNAL OF ECONOMETRICS, 2022, 228 (01) : 107 - 126
  • [10] Robust likelihood functions in Bayesian inference
    Greco, Luca
    Racugno, Walter
    Ventura, Laura
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (05) : 1258 - 1270