Local maximum likelihood estimation and inference

被引:124
|
作者
Fan, JQ
Farmen, M
Gijbels, I
机构
[1] Univ Calif Los Angeles, Los Angeles, CA USA
[2] Univ Catholique Louvain, Inst Stat, B-1348 Louvain, Belgium
[3] Univ N Carolina, Chapel Hill, NC USA
关键词
bandwidth selection; confidence intervals; generalized linear models; logit regression; maximum likelihood; nonparametric regression;
D O I
10.1111/1467-9868.00142
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Local maximum likelihood estimation is a nonparametric counterpart of the widely used parametric maximum likelihood technique. It extends the scope of the parametric maximum likelihood method to a much wider class of parametric spaces. Associated with this nonparametric estimation scheme is the issue of bandwidth selection and bias and variance assessment. This paper provides a unified approach to selecting a bandwidth and constructing confidence intervals in local maximum likelihood estimation. The approach is then applied to least squares nonparametric regression and to nonparametric logistic regression. Our experiences in these two settings show that the general idea outlined here is powerful and encouraging.
引用
收藏
页码:591 / 608
页数:18
相关论文
共 50 条