On the existence of rainbow 4-term arithmetic progressions

被引:6
|
作者
Conlon, David
Jungic, Veselin
Radoicic, Rados
机构
[1] Univ Cambridge, Dept Pure Math & Math Stat, Cambridge CB2 1SB, England
[2] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
[3] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[4] CUNY, Baruch Coll, New York, NY 10010 USA
关键词
Arithmetic Progression; Distinct Color; Color Class; Acta Arith; Consecutive Integer;
D O I
10.1007/s00373-007-0723-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For infinitely many natural numbers n, we construct 4-colorings of [n] = {1, 2, ..., n}, with equinumerous color classes, that contain no 4-term arithmetic progression whose elements are colored in distinct colors. This result solves an open problem of Jungic et al. (Comb Probab Comput 12:599-620, 2003) Axenovich and Fon-der-Flaass (Electron J Comb 11:R1, 2004).
引用
收藏
页码:249 / 254
页数:6
相关论文
共 50 条
  • [1] On the Existence of Rainbow 4-Term Arithmetic Progressions
    David Conlon
    Veselin Jungić
    Radoš Radoičić
    Graphs and Combinatorics, 2007, 23 : 249 - 254
  • [2] ON RAINBOW 4-TERM ARITHMETIC PROGRESSIONS
    Haghighi, M. H. Shirdareh
    Nowbandegani, P. Salehi
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2011, 37 (03) : 33 - 37
  • [3] Linear configurations containing 4-term arithmetic progressions are uncommon
    Versteegen, Leo
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2023, 200
  • [4] Monochromatic 4-term arithmetic progressions in 2-colorings of Zn
    Lu, Linyuan
    Peng, Xing
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2012, 119 (05) : 1048 - 1065
  • [5] Rainbow arithmetic progressions
    Butler, Steve
    Erickson, Craig
    Hogben, Leslie
    Hogenson, Kirsten
    Kramer, Lucas
    Kramer, Richard L.
    Lin, Jephian Chin-Hung
    Martin, Ryan R.
    Stolee, Derrick
    Warnberg, Nathan
    Young, Michael
    JOURNAL OF COMBINATORICS, 2016, 7 (04) : 595 - 626
  • [6] On rainbow arithmetic progressions
    Axenovich, M
    Fon-Der-Flaass, D
    ELECTRONIC JOURNAL OF COMBINATORICS, 2004, 11 (01):
  • [7] The minimum number of monochromatic 4-term progressions in Z(p)
    Wolf, J.
    JOURNAL OF COMBINATORICS, 2010, 1 (01) : 53 - 68
  • [8] COLORINGS WITH ONLY RAINBOW ARITHMETIC PROGRESSIONS
    Pach, J.
    Tomon, I.
    ACTA MATHEMATICA HUNGARICA, 2020, 161 (02) : 507 - 515
  • [9] Colorings with only rainbow arithmetic progressions
    J. Pach
    I. Tomon
    Acta Mathematica Hungarica, 2020, 161 : 507 - 515
  • [10] ON EXISTENCE OF PRIME NUMBERS IN ARITHMETIC PROGRESSIONS
    KOSHIBA, Z
    UCHIYAMA, S
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1967, 19 (03) : 431 - &