On the existence of rainbow 4-term arithmetic progressions

被引:6
|
作者
Conlon, David
Jungic, Veselin
Radoicic, Rados
机构
[1] Univ Cambridge, Dept Pure Math & Math Stat, Cambridge CB2 1SB, England
[2] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
[3] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[4] CUNY, Baruch Coll, New York, NY 10010 USA
关键词
Arithmetic Progression; Distinct Color; Color Class; Acta Arith; Consecutive Integer;
D O I
10.1007/s00373-007-0723-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For infinitely many natural numbers n, we construct 4-colorings of [n] = {1, 2, ..., n}, with equinumerous color classes, that contain no 4-term arithmetic progression whose elements are colored in distinct colors. This result solves an open problem of Jungic et al. (Comb Probab Comput 12:599-620, 2003) Axenovich and Fon-der-Flaass (Electron J Comb 11:R1, 2004).
引用
收藏
页码:249 / 254
页数:6
相关论文
共 50 条