On the existence of rainbow 4-term arithmetic progressions

被引:6
|
作者
Conlon, David
Jungic, Veselin
Radoicic, Rados
机构
[1] Univ Cambridge, Dept Pure Math & Math Stat, Cambridge CB2 1SB, England
[2] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
[3] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[4] CUNY, Baruch Coll, New York, NY 10010 USA
关键词
Arithmetic Progression; Distinct Color; Color Class; Acta Arith; Consecutive Integer;
D O I
10.1007/s00373-007-0723-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For infinitely many natural numbers n, we construct 4-colorings of [n] = {1, 2, ..., n}, with equinumerous color classes, that contain no 4-term arithmetic progression whose elements are colored in distinct colors. This result solves an open problem of Jungic et al. (Comb Probab Comput 12:599-620, 2003) Axenovich and Fon-der-Flaass (Electron J Comb 11:R1, 2004).
引用
收藏
页码:249 / 254
页数:6
相关论文
共 50 条
  • [31] On the Structure of Sets with Few Three-Term Arithmetic Progressions
    Croot, Ernie
    ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01):
  • [32] Almost disjoint families of 3-term arithmetic progressions
    Ardal, H
    Brown, TC
    Pleasants, PAB
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2005, 109 (01) : 75 - 90
  • [33] SQUARES IN ARITHMETIC PROGRESSIONS
    BOMBIERI, E
    GRANVILLE, A
    PINTZ, J
    DUKE MATHEMATICAL JOURNAL, 1992, 66 (03) : 369 - 385
  • [34] Arithmetic progressions in sumsets
    B. Green
    Geometric & Functional Analysis GAFA, 2002, 12 : 584 - 597
  • [35] Discrepancy in arithmetic progressions
    Matousek, J
    Spencer, J
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (01) : 195 - 204
  • [36] Powerful arithmetic progressions
    Hajdu, L.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2008, 19 (04): : 547 - 561
  • [37] SUMS OF ARITHMETIC PROGRESSIONS
    COOK, R
    SHARPE, D
    FIBONACCI QUARTERLY, 1995, 33 (03): : 218 - 221
  • [38] PRIMES IN ARITHMETIC PROGRESSIONS
    MONTGOMERY, HL
    MICHIGAN MATHEMATICAL JOURNAL, 1970, 17 (01) : 33 - +
  • [39] Powers in arithmetic progressions
    Lajos Hajdu
    Szabolcs Tengely
    The Ramanujan Journal, 2021, 55 : 965 - 986
  • [40] Unique Sequences Containing No k-Term Arithmetic Progressions
    Ahmed, Tanbir
    Dybizbanski, Janusz
    Snevily, Hunter
    ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (04):