Unique Sequences Containing No k-Term Arithmetic Progressions

被引:0
|
作者
Ahmed, Tanbir [1 ]
Dybizbanski, Janusz [2 ]
Snevily, Hunter [3 ]
机构
[1] Concordia Univ, Dept Comp Sci & Software Engn, Montreal, PQ, Canada
[2] Univ Gdansk, Inst Informat, PL-80952 Gdansk, Poland
[3] Univ Idaho, Dept Math, Moscow, ID 83843 USA
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2013年 / 20卷 / 04期
关键词
INTEGERS; SETS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with calculating r(k, n), the length of the longest k-Ap free subsequences in 1,2,...,n. We prove the basic inequality r(k,n) <= n - [m/2], where n = m(k - 1) + r and r < k - 1. We also discuss a generalization of a famous conjecture of Szekeres (as appears in Erdos and Turan [4]) and describe a simple greedy algorithm that appears to give an optimal k-AP free sequence infinitely often. We provide many exact values of r(k, n) in the Appendix.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] On Sequences Without k-Term Geometric Progressions
    Huang, Zhengwen
    Shao, Zehui
    Deng, Fei
    Xu, Xiaodong
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2014, 11 (02) : 358 - 362
  • [2] On the structure of sets with many k-term arithmetic progressions
    Elekes, Gyorgy
    ACTA ARITHMETICA, 2009, 138 (02) : 145 - 164
  • [3] On subsets of Fqn containing no k-term progressions
    Lin, Y.
    Wolf, J.
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (05) : 1398 - 1403
  • [4] Minimum Number of Colours to Avoid k-Term Monochromatic Arithmetic Progressions
    Sim, Kai An
    Wong, Kok Bin
    MATHEMATICS, 2022, 10 (02)
  • [5] Magic Square and Arrangement of Consecutive Integers That Avoids k-Term Arithmetic Progressions
    Sim, Kai An
    Wong, Kok Bin
    MATHEMATICS, 2021, 9 (18)
  • [6] Sequences containing no 3-term arithmetic progressions
    Dybizbanski, Janusz
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (02):
  • [7] Sets without k-term progressions can have many shorter progressions
    Fox, Jacob
    Pohoata, Cosmin
    RANDOM STRUCTURES & ALGORITHMS, 2021, 58 (03) : 383 - 389
  • [8] On sets without k-term arithmetic progression
    Shao, Zehui
    Deng, Fei
    Liang, Meilian
    Xu, Xiaodong
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2012, 78 (02) : 610 - 618
  • [9] The Number of Subsets of Integers with No k-Term Arithmetic Progression
    Balogh, Jozsef
    Liu, Hong
    Sharifzadeh, Maryam
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (20) : 6168 - 6186
  • [10] On classification of sequences containing arbitrarily long arithmetic progressions
    Celik, Sermin Cam
    Eyidogan, Sadik
    Goral, Haydar
    Sertbas, Doga Can
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2023, 19 (08) : 1917 - 1952