Unique Sequences Containing No k-Term Arithmetic Progressions

被引:0
|
作者
Ahmed, Tanbir [1 ]
Dybizbanski, Janusz [2 ]
Snevily, Hunter [3 ]
机构
[1] Concordia Univ, Dept Comp Sci & Software Engn, Montreal, PQ, Canada
[2] Univ Gdansk, Inst Informat, PL-80952 Gdansk, Poland
[3] Univ Idaho, Dept Math, Moscow, ID 83843 USA
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2013年 / 20卷 / 04期
关键词
INTEGERS; SETS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with calculating r(k, n), the length of the longest k-Ap free subsequences in 1,2,...,n. We prove the basic inequality r(k,n) <= n - [m/2], where n = m(k - 1) + r and r < k - 1. We also discuss a generalization of a famous conjecture of Szekeres (as appears in Erdos and Turan [4]) and describe a simple greedy algorithm that appears to give an optimal k-AP free sequence infinitely often. We provide many exact values of r(k, n) in the Appendix.
引用
收藏
页数:24
相关论文
共 50 条