Linear configurations containing 4-term arithmetic progressions are uncommon

被引:2
|
作者
Versteegen, Leo [1 ]
机构
[1] Ctr Math Sci, Dept Pure Math & Math Stat, Wilberforce Rd, Cambridge CB3 0WB, England
关键词
Linear configuration; Common; Arithmetic progression; 4-AP; Cyclic group; RAMSEY MULTIPLICITY; EQUATIONS;
D O I
10.1016/j.jcta.2023.105792
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A linear configuration is said to be common in an Abelian group G if every 2-coloring of G yields at least the number of monochromatic instances of a randomly chosen coloring. Saad and Wolf asked whether, analogously to a result by Jagger, Stovi & ccaron;ek and Thomason in graph theory, every configuration containing a 4-term arithmetic progression is uncommon. We prove this in Fpn for p >= 5 and large n and in Zp for large primes p. (c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons .org /licenses /by -nc -nd /4 .0/).
引用
收藏
页数:38
相关论文
共 50 条
  • [1] ON RAINBOW 4-TERM ARITHMETIC PROGRESSIONS
    Haghighi, M. H. Shirdareh
    Nowbandegani, P. Salehi
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2011, 37 (03) : 33 - 37
  • [2] On the Existence of Rainbow 4-Term Arithmetic Progressions
    David Conlon
    Veselin Jungić
    Radoš Radoičić
    Graphs and Combinatorics, 2007, 23 : 249 - 254
  • [3] On the existence of rainbow 4-term arithmetic progressions
    Conlon, David
    Jungic, Veselin
    Radoicic, Rados
    GRAPHS AND COMBINATORICS, 2007, 23 (03) : 249 - 254
  • [4] Monochromatic 4-term arithmetic progressions in 2-colorings of Zn
    Lu, Linyuan
    Peng, Xing
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2012, 119 (05) : 1048 - 1065
  • [5] The minimum number of monochromatic 4-term progressions in Z(p)
    Wolf, J.
    JOURNAL OF COMBINATORICS, 2010, 1 (01) : 53 - 68
  • [6] Sequences containing no 3-term arithmetic progressions
    Dybizbanski, Janusz
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (02):
  • [7] Unique Sequences Containing No k-Term Arithmetic Progressions
    Ahmed, Tanbir
    Dybizbanski, Janusz
    Snevily, Hunter
    ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (04):
  • [8] 4-TERM AP
    BRUCKMAN, PS
    FIBONACCI QUARTERLY, 1983, 21 (01): : 72 - 73
  • [9] INTEGER SETS CONTAINING NO ARITHMETIC PROGRESSIONS
    HEATHBROWN, DR
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1987, 35 : 385 - 394
  • [10] INTEGER SETS CONTAINING NO ARITHMETIC PROGRESSIONS
    SZEMEREDI, E
    ACTA MATHEMATICA HUNGARICA, 1990, 56 (1-2) : 155 - 158