SUMSETS CONTAINING INFINITE ARITHMETIC PROGRESSIONS

被引:11
|
作者
ERDOS, P
NATHANSON, MB
SARKOZY, A
机构
[1] HUNGARIAN ACAD SCI,INST MATH,H-1361 BUDAPEST 5,HUNGARY
[2] CUNY HERBERT H LEHMAN COLL,OFF PROVOST & VICE PRESIDENT ACAD AFFAIRS,BRONX,NY 10468
[3] CUNY BERNARD M BARUCH COLL,DEPT MATH,NEW YORK,NY 10010
关键词
D O I
10.1016/0022-314X(88)90063-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:159 / 166
页数:8
相关论文
共 50 条
  • [1] On infinite arithmetic progressions in sumsets
    Yong-Gao Chen
    Quan-Hui Yang
    Lilu Zhao
    Science China Mathematics, 2023, 66 : 2669 - 2682
  • [2] On infinite arithmetic progressions in sumsets
    Yong-Gao Chen
    Quan-Hui Yang
    Lilu Zhao
    Science China(Mathematics), 2023, 66 (12) : 2669 - 2682
  • [3] On infinite arithmetic progressions in sumsets
    Chen, Yong-Gao
    Yang, Quan-Hui
    Zhao, Lilu
    SCIENCE CHINA-MATHEMATICS, 2023, 66 (12) : 2669 - 2682
  • [4] Finite and infinite arithmetic progressions in sumsets
    Szemeredi, E.
    Vu, V. H.
    ANNALS OF MATHEMATICS, 2006, 163 (01) : 1 - 35
  • [5] Arithmetic progressions in sumsets
    Green, B
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (03) : 584 - 597
  • [6] Arithmetic progressions in sumsets
    B. Green
    Geometric & Functional Analysis GAFA, 2002, 12 : 584 - 597
  • [7] ARITHMETIC PROGRESSIONS IN SUMSETS
    RUZSA, IZ
    ACTA ARITHMETICA, 1991, 60 (02) : 191 - 202
  • [8] SUMSETS CONTAINING LONG ARITHMETIC PROGRESSIONS AND POWERS OF 2
    NATHANSON, MB
    SARKOZY, A
    ACTA ARITHMETICA, 1989, 54 (02) : 147 - 154
  • [9] Arithmetic progressions in sets with small sumsets
    Solymosi, Jozsef
    COMBINATORICS PROBABILITY & COMPUTING, 2006, 15 (04): : 597 - 603
  • [10] ARITHMETIC PROGRESSIONS IN SUMSETS AND DIFFERENCE SETS
    Mei, Shu-Yuan
    Chen, Yong-Gao
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (03) : 601 - 606