SUMSETS CONTAINING INFINITE ARITHMETIC PROGRESSIONS

被引:11
|
作者
ERDOS, P
NATHANSON, MB
SARKOZY, A
机构
[1] HUNGARIAN ACAD SCI,INST MATH,H-1361 BUDAPEST 5,HUNGARY
[2] CUNY HERBERT H LEHMAN COLL,OFF PROVOST & VICE PRESIDENT ACAD AFFAIRS,BRONX,NY 10468
[3] CUNY BERNARD M BARUCH COLL,DEPT MATH,NEW YORK,NY 10010
关键词
D O I
10.1016/0022-314X(88)90063-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:159 / 166
页数:8
相关论文
共 50 条
  • [31] On arithmetic properties of sumsets
    A. Balog
    J. Rivat
    A. Sárközy
    Acta Mathematica Hungarica, 2014, 144 : 18 - 42
  • [32] ON ARITHMETIC PROPERTIES OF SUMSETS
    Balog, A.
    Rivat, J.
    Sarkoezy, A.
    ACTA MATHEMATICA HUNGARICA, 2014, 144 (01) : 18 - 42
  • [33] Inverse Additive Number Theory. XI. Long arithmetic progressions in sets with small sumsets
    Freiman, Gregory A.
    ACTA ARITHMETICA, 2009, 137 (04) : 325 - 331
  • [34] Sequences containing no 3-term arithmetic progressions
    Dybizbanski, Janusz
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (02):
  • [35] Avoiding arithmetic progressions (mod m) and arithmetic progressions
    Landman, BM
    UTILITAS MATHEMATICA, 1997, 52 : 173 - 182
  • [36] On classification of sequences containing arbitrarily long arithmetic progressions
    Celik, Sermin Cam
    Eyidogan, Sadik
    Goral, Haydar
    Sertbas, Doga Can
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2023, 19 (08) : 1917 - 1952
  • [37] INTEGER SUM SETS CONTAINING LONG ARITHMETIC PROGRESSIONS
    FREIMAN, GA
    HALBERSTAM, H
    RUZSA, IZ
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1992, 46 : 193 - 201
  • [38] ARITHMETIC PROGRESSIONS
    HALMOS, PR
    RYAVEC, C
    AMERICAN MATHEMATICAL MONTHLY, 1978, 85 (02): : 95 - 96
  • [39] Monochromatic infinite sumsets
    Leader, Imre
    Russell, Paul A.
    NEW YORK JOURNAL OF MATHEMATICS, 2020, 26 : 467 - 472
  • [40] Geometric progressions in sumsets over finite fields
    Omran Ahmadi
    Igor E. Shparlinski
    Monatshefte für Mathematik, 2007, 152 : 177 - 185