On rainbow arithmetic progressions

被引:0
|
作者
Axenovich, M [1 ]
Fon-Der-Flaass, D
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[3] Russian Acad Sci, Inst Math, Novosibirsk 630090, Russia
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2004年 / 11卷 / 01期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider natural numbers {1,...,n} colored in three colors. We prove that if each color appears on at least ( n + 4)/6 numbers then there is a three-term arithmetic progression whose elements are colored in distinct colors. This variation on the theme of Van der Waerden's theorem proves the conjecture of Jungic et al.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Rainbow arithmetic progressions
    Butler, Steve
    Erickson, Craig
    Hogben, Leslie
    Hogenson, Kirsten
    Kramer, Lucas
    Kramer, Richard L.
    Lin, Jephian Chin-Hung
    Martin, Ryan R.
    Stolee, Derrick
    Warnberg, Nathan
    Young, Michael
    [J]. JOURNAL OF COMBINATORICS, 2016, 7 (04) : 595 - 626
  • [2] COLORINGS WITH ONLY RAINBOW ARITHMETIC PROGRESSIONS
    Pach, J.
    Tomon, I.
    [J]. ACTA MATHEMATICA HUNGARICA, 2020, 161 (02) : 507 - 515
  • [3] Colorings with only rainbow arithmetic progressions
    J. Pach
    I. Tomon
    [J]. Acta Mathematica Hungarica, 2020, 161 : 507 - 515
  • [4] ON RAINBOW 4-TERM ARITHMETIC PROGRESSIONS
    Haghighi, M. H. Shirdareh
    Nowbandegani, P. Salehi
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2011, 37 (03) : 33 - 37
  • [5] Rainbow arithmetic progressions in finite abelian groups
    Young, Michael
    [J]. JOURNAL OF COMBINATORICS, 2018, 9 (04) : 619 - 629
  • [6] On the existence of rainbow 4-term arithmetic progressions
    Conlon, David
    Jungic, Veselin
    Radoicic, Rados
    [J]. GRAPHS AND COMBINATORICS, 2007, 23 (03) : 249 - 254
  • [7] On the Existence of Rainbow 4-Term Arithmetic Progressions
    David Conlon
    Veselin Jungić
    Radoš Radoičić
    [J]. Graphs and Combinatorics, 2007, 23 : 249 - 254
  • [8] Rainbow arithmetic progressions and anti-Ramsey results
    Jungic, V
    Licht, J
    Mahdian, M
    Nesetril, J
    Radoicic, R
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2003, 12 (5-6): : 599 - 620
  • [9] Thue-like sequences and rainbow arithmetic progressions
    Grytczuk, Jaroslaw
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2002, 9
  • [10] Avoiding arithmetic progressions (mod m) and arithmetic progressions
    Landman, BM
    [J]. UTILITAS MATHEMATICA, 1997, 52 : 173 - 182