Rainbow arithmetic progressions and anti-Ramsey results

被引:28
|
作者
Jungic, V [1 ]
Licht, J
Mahdian, M
Nesetril, J
Radoicic, R
机构
[1] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
[2] William H Hall High Sch, Hartford, CT 06117 USA
[3] MIT, Dept Math, Cambridge, MA 02139 USA
来源
COMBINATORICS PROBABILITY & COMPUTING | 2003年 / 12卷 / 5-6期
关键词
D O I
10.1017/S096354830300587X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The van der Waerden theorem in Ramsey theory states that, for every k and t and sufficiently large N, every k-colouring of [N] contains a monochromatic arithmetic progression of length t. Motivated by this result, Radoicic conjectured that every equinumerous 3-colouring of [3n] contains a 3-term rainbow arithmetic progression, i.e., an arithmetic progression whose terms are coloured with distinct colours. In this paper, we prove that every 3-colouring of the set of natural numbers for which each colour class has density more than 1/6, contains a 3-term rainbow arithmetic progression. We also prove similar results for colourings; of Z(n). Finally, we give a general perspective on other anti-Ramsey-type problems that can be considered.
引用
收藏
页码:599 / 620
页数:22
相关论文
共 50 条
  • [1] An anti-Ramsey theorem
    Montellano-Ballesteros, JJ
    Neumann-Lara, V
    COMBINATORICA, 2002, 22 (03) : 445 - 449
  • [2] Rainbow arithmetic progressions
    Butler, Steve
    Erickson, Craig
    Hogben, Leslie
    Hogenson, Kirsten
    Kramer, Lucas
    Kramer, Richard L.
    Lin, Jephian Chin-Hung
    Martin, Ryan R.
    Stolee, Derrick
    Warnberg, Nathan
    Young, Michael
    JOURNAL OF COMBINATORICS, 2016, 7 (04) : 595 - 626
  • [3] On rainbow arithmetic progressions
    Axenovich, M
    Fon-Der-Flaass, D
    ELECTRONIC JOURNAL OF COMBINATORICS, 2004, 11 (01):
  • [4] AN ANTI-RAMSEY THEOREM
    BABAI, L
    GRAPHS AND COMBINATORICS, 1985, 1 (01) : 23 - 28
  • [5] Anti-Ramsey multiplicities
    De Silva, Jessica
    Si, Xiang
    Tait, Michael
    Tuncbilek, Yunus
    Yang, Ruifan
    Young, Michael
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2019, 73 : 357 - 371
  • [6] An Anti-Ramsey Theorem
    J. J. Montellano-Ballesteros
    V. Neumann-Lara
    Combinatorica, 2002, 22 : 445 - 449
  • [7] ANTI-RAMSEY NUMBER OF EDGE-DISJOINT RAINBOW SPANNING TREES
    Lu, Linyuan
    Wang, Zhiyu
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (04) : 2346 - 2362
  • [8] An Anti-Ramsey Theorem on Diamonds
    Montellano-Ballesteros, J. J.
    GRAPHS AND COMBINATORICS, 2010, 26 (02) : 283 - 291
  • [9] Anti-Ramsey threshold of cycles?
    Barros, Gabriel Ferreira
    Cavalar, Bruno Pasqualotto
    Mota, Guilherme Oliveira
    Parczyk, Olaf
    DISCRETE APPLIED MATHEMATICS, 2022, 323 : 228 - 235
  • [10] An anti-Ramsey condition on trees
    Picollelli, Michael E.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2008, 15 (01):