STABILITY FOR DETERMINATION OF RIEMANNIAN METRICS BY SPECTRAL DATA AND DIRICHLET-TO-NEUMANN MAP LIMITED ON ARBITRARY SUBBOUNDARY

被引:1
|
作者
Imanuvilov, Oleg Yu [1 ]
Yamamoto, Masahiro [2 ,3 ,4 ]
机构
[1] Colorado State Univ, Dept Math, 101 Weber Bldg, Ft Collins, CO 80523 USA
[2] Univ Tokyo, Dept Math Sci, Meguro Ku, Tokyo 153, Japan
[3] Acad Romanian Scientists, Splaiul Independentei St 54, Bucharest 050094, Romania
[4] Peoples Friendship Univ Russia, RUDN Univ, 6 Miklukho Maklaya St, Moscow 117198, Russia
基金
中国国家自然科学基金; 日本学术振兴会;
关键词
Spectral data; Dirichlet-to-Neumann map; stability; CALDERON INVERSE PROBLEM; BORG-LEVINSON THEOREM; WAVE-EQUATION; RECONSTRUCTION; UNIQUENESS;
D O I
10.3934/ipi.2019054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish conditional stability estimates for two inverse problems of determining metrics in two dimensional Laplace-Beltrami operators. As data, in the first inverse problem we adopt spectral data on an arbitrarily fixed subboundary, while in the second, we choose the Dirichlet-to-Neumann map limited on an arbitrarily fixed subboundary. The conditional stability estimates for the two inverse problems are stated as follows. If the difference between spectral data or Dirichlet-to-Neumann maps related to two metrics g(1) and g(2) is small, then g(1) and g(2) are close in L-2(Omega) modulo a suitable diffeomorphism within a priori bounds of g(1) and g(2). Both stability estimates are of the same double logarithmic rate.
引用
收藏
页码:1213 / 1258
页数:46
相关论文
共 39 条
  • [1] Stability of spectral partitions and the Dirichlet-to-Neumann map
    Berkolaiko, G.
    Canzani, Y.
    Cox, G.
    Marzuola, J. L.
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (06)
  • [2] Stability of spectral partitions and the Dirichlet-to-Neumann map
    G. Berkolaiko
    Y. Canzani
    G. Cox
    J. L. Marzuola
    [J]. Calculus of Variations and Partial Differential Equations, 2022, 61
  • [3] Spectral invariants of the magnetic Dirichlet-to-Neumann map on Riemannian manifolds
    Liu, Genqian
    Tan, Xiaoming
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (04)
  • [4] Boundary determination of conductivities and Riemannian metrics via local Dirichlet-to-Neumann operator
    Kang, H
    Yun, K
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2003, 34 (03) : 719 - 735
  • [5] On determining a Riemannian manifold from the Dirichlet-to-Neumann map
    Lassas, M
    Uhlmann, G
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2001, 34 (05): : 771 - 787
  • [6] Stable determination of generic simple metrics from the hyperbolic Dirichlet-to-Neumann map
    Stefanov, P
    Uhlmann, G
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2005, 2005 (17) : 1047 - 1061
  • [7] Nodal deficiency, spectral flow, and the Dirichlet-to-Neumann map
    Gregory Berkolaiko
    Graham Cox
    Jeremy L. Marzuola
    [J]. Letters in Mathematical Physics, 2019, 109 : 1611 - 1623
  • [8] Nodal deficiency, spectral flow, and the Dirichlet-to-Neumann map
    Berkolaiko, Gregory
    Cox, Graham
    Marzuola, Jeremy L.
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2019, 109 (07) : 1611 - 1623
  • [9] Dirichlet-to-Neumann map for Poincaré–Einstein metrics in even dimensions
    Fang Wang
    [J]. Calculus of Variations and Partial Differential Equations, 2019, 58
  • [10] Determining Lame coefficients by the elastic Dirichlet-to-Neumann map on a Riemannian manifold
    Tan, Xiaoming
    Liu, Genqian
    [J]. INVERSE PROBLEMS, 2023, 39 (09)