On determining a Riemannian manifold from the Dirichlet-to-Neumann map

被引:137
|
作者
Lassas, M
Uhlmann, G
机构
[1] Univ Helsinki, Rolf Nevanlinna Inst, FIN-00014 Helsinki, Finland
[2] Univ Washington, Dept Math, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0012-9593(01)01076-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the inverse problem of determining a Riemannian manifold from the boundary data of harmonic functions. This problem arises in electrical impedance tomography, where one tries to find an unknown conductivity inside a given body from voltage and current measurements made at the boundary of the body. We show that one can reconstruct the conformal class of a smooth, compact Riemannian surface with boundary from the set of Cauchy data. given on a non-empty open subset of the boundary. of all harmonic functions. Also, we show that one can reconstruct in dimension n greater than or equal to 3 compact real-analytic manifolds with boundary from the same information. We make no assumptions on the topology of the manifold other than connectedness. (C) 2001 editions scientiliques et medicales Elsevier SAS.
引用
收藏
页码:771 / 787
页数:17
相关论文
共 50 条
  • [1] Determining Lame coefficients by the elastic Dirichlet-to-Neumann map on a Riemannian manifold
    Tan, Xiaoming
    Liu, Genqian
    [J]. INVERSE PROBLEMS, 2023, 39 (09)
  • [2] Spectral invariants of the magnetic Dirichlet-to-Neumann map on Riemannian manifolds
    Liu, Genqian
    Tan, Xiaoming
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (04)
  • [3] On the local Dirichlet-to-Neumann map
    Uhlmann, G
    [J]. NEW ANALYTIC AND GEOMETRIC METHODS IN INVERSE PROBLEMS, 2004, : 261 - 279
  • [4] The scattering relation and the Dirichlet-to-Neumann map
    Pestov, Leonid
    Uhlmann, Gunther
    [J]. RECENT ADVANCES IN DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2006, 412 : 249 - 262
  • [5] APPROXIMATION OF THE ELASTIC DIRICHLET-TO-NEUMANN MAP
    Vodev, Georgi
    [J]. INVERSE PROBLEMS AND IMAGING, 2023, 17 (01) : 297 - 318
  • [6] INCREASING STABILITY FOR DETERMINING THE POTENTIAL IN THE SCHRODINGER EQUATION WITH ATTENUATION FROM THE DIRICHLET-TO-NEUMANN MAP
    Isakov, Victor
    Wang, Jenn-Nan
    [J]. INVERSE PROBLEMS AND IMAGING, 2014, 8 (04) : 1139 - 1150
  • [7] Stability of spectral partitions and the Dirichlet-to-Neumann map
    Berkolaiko, G.
    Canzani, Y.
    Cox, G.
    Marzuola, J. L.
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (06)
  • [8] Stability of spectral partitions and the Dirichlet-to-Neumann map
    G. Berkolaiko
    Y. Canzani
    G. Cox
    J. L. Marzuola
    [J]. Calculus of Variations and Partial Differential Equations, 2022, 61
  • [9] The Determinant of the Dirichlet-to-Neumann Map for Surfaces with Boundary
    Guillarmou, Colin
    Guillope, Laurent
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007
  • [10] The Complete Dirichlet-to-Neumann Map for Differential Forms
    Vladimir Sharafutdinov
    Clayton Shonkwiler
    [J]. Journal of Geometric Analysis, 2013, 23 : 2063 - 2080