On the local Dirichlet-to-Neumann map

被引:0
|
作者
Uhlmann, G [1 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We survey some recent progress on the problem of determining a conductivity or a potential by measuring the elliptic Dirichlet-to-Neumann map for the associated conductivity equation or the Schrodinger equation. We make emphasis on the new results obtained on open problem 2 stated in [21] which concerns with the case that the measurements are made on a strict subset of the boundary.
引用
收藏
页码:261 / 279
页数:19
相关论文
共 50 条
  • [1] Local determination of conductivity at the boundary from the Dirichlet-to-Neumann map
    Nakamura, G
    Tanuma, K
    INVERSE PROBLEMS, 2001, 17 (03) : 405 - 419
  • [2] The scattering relation and the Dirichlet-to-Neumann map
    Pestov, Leonid
    Uhlmann, Gunther
    RECENT ADVANCES IN DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2006, 412 : 249 - 262
  • [3] APPROXIMATION OF THE ELASTIC DIRICHLET-TO-NEUMANN MAP
    Vodev, Georgi
    INVERSE PROBLEMS AND IMAGING, 2023, 17 (01) : 297 - 318
  • [4] The Determinant of the Dirichlet-to-Neumann Map for Surfaces with Boundary
    Guillarmou, Colin
    Guillope, Laurent
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007
  • [5] The Complete Dirichlet-to-Neumann Map for Differential Forms
    Vladimir Sharafutdinov
    Clayton Shonkwiler
    Journal of Geometric Analysis, 2013, 23 : 2063 - 2080
  • [6] Stability of spectral partitions and the Dirichlet-to-Neumann map
    G. Berkolaiko
    Y. Canzani
    G. Cox
    J. L. Marzuola
    Calculus of Variations and Partial Differential Equations, 2022, 61
  • [7] Stability of spectral partitions and the Dirichlet-to-Neumann map
    Berkolaiko, G.
    Canzani, Y.
    Cox, G.
    Marzuola, J. L.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (06)
  • [8] The Complete Dirichlet-to-Neumann Map for Differential Forms
    Sharafutdinov, Vladimir
    Shonkwiler, Clayton
    JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (04) : 2063 - 2080
  • [9] The boundary distance function and the Dirichlet-to-Neumann map
    Pestov, L
    Uhlmann, G
    MATHEMATICAL RESEARCH LETTERS, 2004, 11 (2-3) : 285 - 297
  • [10] Dirichlet-to-Neumann Map for a Nonlinear Diffusion Equation
    Barone, Vincenzo
    De Lillo, Silvana
    Lupo, Gaia
    Polimeno, Antonino
    STUDIES IN APPLIED MATHEMATICS, 2011, 126 (02) : 145 - 155