Stability of spectral partitions and the Dirichlet-to-Neumann map

被引:2
|
作者
Berkolaiko, G. [1 ]
Canzani, Y. [2 ]
Cox, G. [3 ]
Marzuola, J. L. [2 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
[3] Mem Univ Newfoundland, Dept Math & Stat, St John, NL A1C 5S7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
58J50; 35B05; 35P05; COURANT-SHARP EIGENVALUES; NODAL DOMAINS;
D O I
10.1007/s00526-022-02311-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The oscillation of a Laplacian eigenfunction gives a great deal of information about the manifold on which it is defined. This oscillation can be encoded in the nodal deficiency, an important geometric quantity that is notoriously hard to compute, or even estimate. Here we compare two recently obtained formulas for the nodal deficiency, one in terms of an energy functional on the space of equipartitions of the manifold, and the other in terms of a two-sided Dirichlet-to-Neumann map defined on the nodal set. We relate these two approaches by giving an explicit formula for the Hessian of the equipartition energy in terms of the Dirichlet-to-Neumann map. This allows us to compute Hessian eigenfunctions, and hence directions of steepest descent, for the equipartition energy in terms of the corresponding Dirichlet-to-Neumann eigenfunctions. Our results do not assume bipartiteness, and hence are relevant to the study of spectral minimal partitions.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Stability of spectral partitions and the Dirichlet-to-Neumann map
    G. Berkolaiko
    Y. Canzani
    G. Cox
    J. L. Marzuola
    [J]. Calculus of Variations and Partial Differential Equations, 2022, 61
  • [2] Nodal deficiency, spectral flow, and the Dirichlet-to-Neumann map
    Gregory Berkolaiko
    Graham Cox
    Jeremy L. Marzuola
    [J]. Letters in Mathematical Physics, 2019, 109 : 1611 - 1623
  • [3] Nodal deficiency, spectral flow, and the Dirichlet-to-Neumann map
    Berkolaiko, Gregory
    Cox, Graham
    Marzuola, Jeremy L.
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2019, 109 (07) : 1611 - 1623
  • [4] On the local Dirichlet-to-Neumann map
    Uhlmann, G
    [J]. NEW ANALYTIC AND GEOMETRIC METHODS IN INVERSE PROBLEMS, 2004, : 261 - 279
  • [5] Spectral stability analysis of the Dirichlet-to-Neumann map for fractional diffusion equations with a reaction coefficient
    Mdimagh, Ridha
    Jday, Fadhel
    [J]. AIMS MATHEMATICS, 2024, 9 (03): : 5394 - 5406
  • [6] Spectral invariants of the magnetic Dirichlet-to-Neumann map on Riemannian manifolds
    Liu, Genqian
    Tan, Xiaoming
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (04)
  • [7] The scattering relation and the Dirichlet-to-Neumann map
    Pestov, Leonid
    Uhlmann, Gunther
    [J]. RECENT ADVANCES IN DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2006, 412 : 249 - 262
  • [8] APPROXIMATION OF THE ELASTIC DIRICHLET-TO-NEUMANN MAP
    Vodev, Georgi
    [J]. INVERSE PROBLEMS AND IMAGING, 2023, 17 (01) : 297 - 318
  • [9] STABILITY FOR DETERMINATION OF RIEMANNIAN METRICS BY SPECTRAL DATA AND DIRICHLET-TO-NEUMANN MAP LIMITED ON ARBITRARY SUBBOUNDARY
    Imanuvilov, Oleg Yu
    Yamamoto, Masahiro
    [J]. INVERSE PROBLEMS AND IMAGING, 2019, 13 (06) : 1213 - 1258
  • [10] Spectral asymptotics of the Dirichlet-to-Neumann map on multiply connected domains in Rd
    Hislop, PD
    Lutzer, CV
    [J]. INVERSE PROBLEMS, 2001, 17 (06) : 1717 - 1741