Spectral invariants of the magnetic Dirichlet-to-Neumann map on Riemannian manifolds

被引:2
|
作者
Liu, Genqian [1 ]
Tan, Xiaoming [1 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
ESSENTIAL SELF-ADJOINTNESS; SCHRODINGER-OPERATORS; INVERSE SCATTERING; GLOBAL UNIQUENESS; ONE HEAR; SHAPE;
D O I
10.1063/5.0088549
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper is devoted to investigating the heat trace asymptotic expansion associated with the magnetic Steklov problem on a smooth compact Riemannian manifold (Omega, g) with smooth boundary partial derivative Omega. By computing the full symbol of the magnetic Dirichlet-to-Neumann map M, we establish an effective procedure, by which we can calculate all the coefficients a(0), a(1), ..., a(n-1) of the asymptotic expansion. In particular, we explicitly give the first four coefficients a(0), a(1), a(2), and a(3). They are spectral invariants, which provide precise information concerning the volume and curvatures of the boundary partial derivative Omega and some physical quantities.
引用
收藏
页数:47
相关论文
共 50 条
  • [1] Spectral invariants of Dirichlet-to-Neumann operators on surfaces
    Lagace, Jean
    St-Amant, Simon
    JOURNAL OF SPECTRAL THEORY, 2021, 11 (04) : 1627 - 1667
  • [2] On determining a Riemannian manifold from the Dirichlet-to-Neumann map
    Lassas, M
    Uhlmann, G
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2001, 34 (05): : 771 - 787
  • [3] Stability of spectral partitions and the Dirichlet-to-Neumann map
    G. Berkolaiko
    Y. Canzani
    G. Cox
    J. L. Marzuola
    Calculus of Variations and Partial Differential Equations, 2022, 61
  • [4] Stability of spectral partitions and the Dirichlet-to-Neumann map
    Berkolaiko, G.
    Canzani, Y.
    Cox, G.
    Marzuola, J. L.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (06)
  • [5] THE INVERSE PROBLEM FOR THE DIRICHLET-TO-NEUMANN MAP ON LORENTZIAN MANIFOLDS
    Stefanov, Plamen
    Yang, Yang
    ANALYSIS & PDE, 2018, 11 (06): : 1381 - 1414
  • [6] Nodal deficiency, spectral flow, and the Dirichlet-to-Neumann map
    Gregory Berkolaiko
    Graham Cox
    Jeremy L. Marzuola
    Letters in Mathematical Physics, 2019, 109 : 1611 - 1623
  • [7] Nodal deficiency, spectral flow, and the Dirichlet-to-Neumann map
    Berkolaiko, Gregory
    Cox, Graham
    Marzuola, Jeremy L.
    LETTERS IN MATHEMATICAL PHYSICS, 2019, 109 (07) : 1611 - 1623
  • [8] STABILITY FOR DETERMINATION OF RIEMANNIAN METRICS BY SPECTRAL DATA AND DIRICHLET-TO-NEUMANN MAP LIMITED ON ARBITRARY SUBBOUNDARY
    Imanuvilov, Oleg Yu
    Yamamoto, Masahiro
    INVERSE PROBLEMS AND IMAGING, 2019, 13 (06) : 1213 - 1258
  • [9] The Dirichlet-to-Neumann map for a semilinear wave equation on Lorentzian manifolds
    Hintz, Peter
    Uhlmann, Gunther
    Zhai, Jian
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2022, 47 (12) : 2363 - 2400
  • [10] Determining Lame coefficients by the elastic Dirichlet-to-Neumann map on a Riemannian manifold
    Tan, Xiaoming
    Liu, Genqian
    INVERSE PROBLEMS, 2023, 39 (09)