Determining Lame coefficients by the elastic Dirichlet-to-Neumann map on a Riemannian manifold

被引:0
|
作者
Tan, Xiaoming [1 ]
Liu, Genqian [1 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Lame system; inverse problems; elastic Calderon problem; elastic Dirichlet-to-Neumann map; pseudodifferential operators; BOUNDARY-VALUE PROBLEM; GLOBAL UNIQUENESS; INVERSE PROBLEMS; DETERMINING CONDUCTIVITY; MATERIAL PARAMETERS; CALDERON PROBLEM; RECONSTRUCTION; IDENTIFICATION; VISCOSITY; OPERATOR;
D O I
10.1088/1361-6420/ace649
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the Lame operator L-lambda,L-mu with variable coefficients lambda and mu on a smooth compact Riemannian manifold (M, g) with smooth boundary partial derivative M, we give an explicit expression for the full symbol of the elastic Dirichlet-to-Neumann map. Lambda(lambda,mu). We show that Lambda(lambda,mu) uniquely determines the partial derivatives of all orders of the Lame coefficients lambda and mu on partial derivative M. Moreover, for a nonempty smooth open subset Gamma subset of partial derivative M, suppose that the manifold and the Lame coefficients are real analytic up to Gamma, we prove that Lambda(lambda,mu) uniquely determines the Lame coefficients on the whole manifold <overline>M.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] On determining a Riemannian manifold from the Dirichlet-to-Neumann map
    Lassas, M
    Uhlmann, G
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2001, 34 (05): : 771 - 787
  • [2] APPROXIMATION OF THE ELASTIC DIRICHLET-TO-NEUMANN MAP
    Vodev, Georgi
    [J]. INVERSE PROBLEMS AND IMAGING, 2023, 17 (01) : 297 - 318
  • [3] Spectral invariants of the magnetic Dirichlet-to-Neumann map on Riemannian manifolds
    Liu, Genqian
    Tan, Xiaoming
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (04)
  • [4] On the local Dirichlet-to-Neumann map
    Uhlmann, G
    [J]. NEW ANALYTIC AND GEOMETRIC METHODS IN INVERSE PROBLEMS, 2004, : 261 - 279
  • [5] Dirichlet-to-Neumann map for three-dimensional elastic waves
    Gächter, GK
    Grote, MJ
    [J]. WAVE MOTION, 2003, 37 (03) : 293 - 311
  • [6] The scattering relation and the Dirichlet-to-Neumann map
    Pestov, Leonid
    Uhlmann, Gunther
    [J]. RECENT ADVANCES IN DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2006, 412 : 249 - 262
  • [7] Stably determining time-dependent convection-diffusion coefficients from a partial Dirichlet-to-Neumann map
    Bellassoued, Mourad
    Ben Fraj, Oumaima
    [J]. INVERSE PROBLEMS, 2021, 37 (04)
  • [8] Stability of spectral partitions and the Dirichlet-to-Neumann map
    Berkolaiko, G.
    Canzani, Y.
    Cox, G.
    Marzuola, J. L.
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (06)
  • [9] Stability of spectral partitions and the Dirichlet-to-Neumann map
    G. Berkolaiko
    Y. Canzani
    G. Cox
    J. L. Marzuola
    [J]. Calculus of Variations and Partial Differential Equations, 2022, 61
  • [10] The Determinant of the Dirichlet-to-Neumann Map for Surfaces with Boundary
    Guillarmou, Colin
    Guillope, Laurent
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007