Spectral stability analysis of the Dirichlet-to-Neumann map for fractional diffusion equations with a reaction coefficient

被引:0
|
作者
Mdimagh, Ridha [1 ,3 ]
Jday, Fadhel [2 ,3 ]
机构
[1] Univ Jeddah, Coll Sci & Arts Khulis, Dept Math, Jeddah, Saudi Arabia
[2] Umm Al Qura Univ, Jamoum Univ Coll, Math Dept, Mecca, Saudi Arabia
[3] Univ Tunis El Manar, ENIT LAMSIN, El Manar, Tunisia
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 03期
关键词
fractional diffusion equation; diffusion potential; Dirichlet-to-Neumann (DN) map; Holder-type stability; spectral decomposition;
D O I
10.3934/math.2024260
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper focused on the stability analysis of the Dirichlet-to-Neumann (DN) map the fractional diffusion equation with a reaction coefficient q. The main result provided a Holder-type stability estimate for the map, which was formulated in terms of the Dirichlet eigenvalues and normal derivatives of eigenfunctions of the operator A(q) := -Delta + q.
引用
收藏
页码:5394 / 5406
页数:13
相关论文
共 50 条
  • [1] Stability of spectral partitions and the Dirichlet-to-Neumann map
    G. Berkolaiko
    Y. Canzani
    G. Cox
    J. L. Marzuola
    Calculus of Variations and Partial Differential Equations, 2022, 61
  • [2] Stability of spectral partitions and the Dirichlet-to-Neumann map
    Berkolaiko, G.
    Canzani, Y.
    Cox, G.
    Marzuola, J. L.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (06)
  • [3] Dirichlet-to-Neumann Map for a Nonlinear Diffusion Equation
    Barone, Vincenzo
    De Lillo, Silvana
    Lupo, Gaia
    Polimeno, Antonino
    STUDIES IN APPLIED MATHEMATICS, 2011, 126 (02) : 145 - 155
  • [4] Nodal deficiency, spectral flow, and the Dirichlet-to-Neumann map
    Gregory Berkolaiko
    Graham Cox
    Jeremy L. Marzuola
    Letters in Mathematical Physics, 2019, 109 : 1611 - 1623
  • [5] Nodal deficiency, spectral flow, and the Dirichlet-to-Neumann map
    Berkolaiko, Gregory
    Cox, Graham
    Marzuola, Jeremy L.
    LETTERS IN MATHEMATICAL PHYSICS, 2019, 109 (07) : 1611 - 1623
  • [6] Stability result for elliptic inverse periodic coefficient problem by partial Dirichlet-to-Neumann map
    Choulli, Mourad
    Kian, Yavar
    Soccorsi, Eric
    JOURNAL OF SPECTRAL THEORY, 2018, 8 (02) : 733 - 768
  • [7] On the local Dirichlet-to-Neumann map
    Uhlmann, G
    NEW ANALYTIC AND GEOMETRIC METHODS IN INVERSE PROBLEMS, 2004, : 261 - 279
  • [8] Spectral invariants of the magnetic Dirichlet-to-Neumann map on Riemannian manifolds
    Liu, Genqian
    Tan, Xiaoming
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (04)
  • [9] Recovering a complex coefficient in a planar domain from the Dirichlet-to-Neumann map
    Francini, E
    INVERSE PROBLEMS, 2000, 16 (01) : 107 - 119
  • [10] The scattering relation and the Dirichlet-to-Neumann map
    Pestov, Leonid
    Uhlmann, Gunther
    RECENT ADVANCES IN DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2006, 412 : 249 - 262