Learning to Segment Using Machine-Learned Penalized Logistic Models

被引:0
|
作者
Yue, Yong [1 ]
Tagare, Hemant D. [2 ]
机构
[1] Yale Univ, Sch Med, Dept Diagnost Radiol, 333 Cedar St, New Haven, CT 06511 USA
[2] Yale Univ, Sch Med, Dept Biomed Engn, Dept Diagnost Radiol, New Haven, CT 06520 USA
关键词
IMAGE SEGMENTATION; ULTRASOUND IMAGES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Classical maximum-a-posteriori (MAP) segmentation uses generative models for images. However creating tractable generative models can be difficult for complex images. Moreover; generative models require auxiliary parameters to be included in the maximization, which makes the maximization more complicated. This paper proposes an alternative to the MAP approach: using a penalized logistic model to directly model the segmentation posterior This approach has two advantages: (1) It requires fewer auxiliary parameters, and (2) it provides a standard way of incorporating powerful machine-learning methods into segmentation so that complex image phenomenon can be learned easily from a training set. The technique is used to segment cardiac ultrasound images sequences which have substantial spatio-temporal contrast variation that is cumbersome to model. Experimental results show that the method gives accurate segmentations of the endocardium in spite of the contrast variation.
引用
收藏
页码:121 / +
页数:2
相关论文
共 50 条
  • [41] Successes and challenges in using machine-learned activation energies in kinetic simulations
    Ismail, I.
    Robertson, C.
    Habershon, S.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2022, 157 (01):
  • [42] Osteoporosis Prediction Using Machine-Learned Optical Bone Densitometry Data
    Kaname Miura
    Shigeo M. Tanaka
    Chanisa Chotipanich
    Thanapon Chobpenthai
    Attapon Jantarato
    Anak Khantachawana
    [J]. Annals of Biomedical Engineering, 2024, 52 : 396 - 405
  • [43] Database of NIH grants using machine-learned categories and graphical clustering
    Edmund M Talley
    David Newman
    David Mimno
    Bruce W Herr
    Hanna M Wallach
    Gully A P C Burns
    A G Miriam Leenders
    Andrew McCallum
    [J]. Nature Methods, 2011, 8 : 443 - 444
  • [44] Machine-learned potentials for eucryptite: A systematic comparison
    Hill, Jorg-Rudiger
    Mannstadt, Wolfgang
    [J]. JOURNAL OF MATERIALS RESEARCH, 2023, 38 (24) : 5188 - 5197
  • [45] Toward Requirements Specification for Machine-Learned Components
    Rahimi, Mona
    Guo, Jin L. C.
    Kokaly, Sahar
    Chechik, Marsha
    [J]. 2019 IEEE 27TH INTERNATIONAL REQUIREMENTS ENGINEERING CONFERENCE WORKSHOPS (REW 2019), 2019, : 241 - 244
  • [46] Machine-learned prediction of the electronic fields in a crystal
    Teh, Ying Shi
    Ghosh, Swarnava
    Bhattacharya, Kaushik
    [J]. MECHANICS OF MATERIALS, 2021, 163
  • [47] Machine-learned exclusion limits without binning
    Arganda, Ernesto
    Perez, Andres D.
    de los Rios, Martin
    Sanda Seoane, Rosa Maria
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2023, 83 (12):
  • [48] AMALEU: A Machine-Learned Universal Language Representation
    Costa-jussa, Marta R.
    [J]. PROCESAMIENTO DEL LENGUAJE NATURAL, 2020, (65): : 105 - 108
  • [49] Machine-learned exclusion limits without binning
    Ernesto Arganda
    Andres D. Perez
    Martín de los Rios
    Rosa María Sandá Seoane
    [J]. The European Physical Journal C, 83
  • [50] English morphological analysis with machine-learned rules
    Tang, Xuri
    [J]. PACLIC 20: Proceedings of the 20th Pacific Asia Conference on Language, Information and Computation, 2006, : 35 - 41