Machine-learned exclusion limits without binning

被引:4
|
作者
Arganda, Ernesto [1 ,2 ,3 ]
Perez, Andres D. [1 ,2 ,3 ]
de los Rios, Martin [1 ,2 ]
Sanda Seoane, Rosa Maria [2 ]
机构
[1] Univ Autonoma Madrid, Dept Fis Teor, Madrid 28049, Spain
[2] UAM, CSIC, Inst Fis Teor, C Nicolas Cabrera 13-15,Campus Cantoblanco, Madrid 28049, Spain
[3] Univ Nacl La Plata, IFLP, CONICET Dpto Fis, CC 67, RA-1900 La Plata, Argentina
来源
EUROPEAN PHYSICAL JOURNAL C | 2023年 / 83卷 / 12期
关键词
ENERGY;
D O I
10.1140/epjc/s10052-023-12314-z
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Machine-learned likelihoods (MLL) combines machine-learning classification techniques with likelihoodbased inference tests to estimate the experimental sensitivity of high-dimensional data sets. We extend theMLLmethod by including kernel density estimators (KDE) to avoid binning the classifier output to extract the resulting one-dimensional signal and background probability density functions. We first test our method on toy models generated with multivariate Gaussian distributions, where the true probability distribution functions are known. Later, we apply the method to two cases of interest at the LHC: a search for exotic Higgs bosons, and a Z' boson decaying into lepton pairs. In contrast to physical-based quantities, the typical fluctuations of the ML outputs give non-smooth probability distributions for puresignal and pure-background samples. The non-smoothness is propagated into the density estimation due to the good performance and flexibility of the KDE method. We study its impact on the final significance computation, and we compare the results using the average of several independent ML output realizations, which allows us to obtain smoother distributions. We conclude that the significance estimation turns out to be not sensible to this issue.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Machine-learned exclusion limits without binning
    Ernesto Arganda
    Andres D. Perez
    Martín de los Rios
    Rosa María Sandá Seoane
    [J]. The European Physical Journal C, 83
  • [2] The machine-learned radii of atoms
    Nikolaienko, Tymofii Yu.
    Bulavin, Leonid A.
    [J]. COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2021, 1204
  • [3] Machine-Learned Premise Selection for Lean
    Piotrowski, Bartosz
    Mir, Ramon Fernandez
    Ayers, Edward
    [J]. AUTOMATED REASONING WITH ANALYTIC TABLEAUX AND RELATED METHODS, TABLEAUX 2023, 2023, 14278 : 175 - 186
  • [4] Understanding machine-learned density functionals
    Li, Li
    Snyder, John C.
    Pelaschier, Isabelle M.
    Huang, Jessica
    Niranjan, Uma-Naresh
    Duncan, Paul
    Rupp, Matthias
    Mueller, Klaus-Robert
    Burke, Kieron
    [J]. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2016, 116 (11) : 819 - 833
  • [5] Machine-learned electron densities of nucleic acids
    Lee, Alex J.
    Rackers, Joshua A.
    Bricker, William P.
    [J]. BIOPHYSICAL JOURNAL, 2024, 123 (03) : 499A - 499A
  • [6] Toward Requirements Specification for Machine-Learned Components
    Rahimi, Mona
    Guo, Jin L. C.
    Kokaly, Sahar
    Chechik, Marsha
    [J]. 2019 IEEE 27TH INTERNATIONAL REQUIREMENTS ENGINEERING CONFERENCE WORKSHOPS (REW 2019), 2019, : 241 - 244
  • [7] Machine-learned prediction of the electronic fields in a crystal
    Teh, Ying Shi
    Ghosh, Swarnava
    Bhattacharya, Kaushik
    [J]. MECHANICS OF MATERIALS, 2021, 163
  • [8] Machine-learned potentials for eucryptite: A systematic comparison
    Hill, Jorg-Rudiger
    Mannstadt, Wolfgang
    [J]. JOURNAL OF MATERIALS RESEARCH, 2023, 38 (24) : 5188 - 5197
  • [9] AMALEU: A Machine-Learned Universal Language Representation
    Costa-jussa, Marta R.
    [J]. PROCESAMIENTO DEL LENGUAJE NATURAL, 2020, (65): : 105 - 108
  • [10] English morphological analysis with machine-learned rules
    Tang, Xuri
    [J]. PACLIC 20: Proceedings of the 20th Pacific Asia Conference on Language, Information and Computation, 2006, : 35 - 41