Machine-learned exclusion limits without binning

被引:4
|
作者
Arganda, Ernesto [1 ,2 ,3 ]
Perez, Andres D. [1 ,2 ,3 ]
de los Rios, Martin [1 ,2 ]
Sanda Seoane, Rosa Maria [2 ]
机构
[1] Univ Autonoma Madrid, Dept Fis Teor, Madrid 28049, Spain
[2] UAM, CSIC, Inst Fis Teor, C Nicolas Cabrera 13-15,Campus Cantoblanco, Madrid 28049, Spain
[3] Univ Nacl La Plata, IFLP, CONICET Dpto Fis, CC 67, RA-1900 La Plata, Argentina
来源
EUROPEAN PHYSICAL JOURNAL C | 2023年 / 83卷 / 12期
关键词
ENERGY;
D O I
10.1140/epjc/s10052-023-12314-z
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Machine-learned likelihoods (MLL) combines machine-learning classification techniques with likelihoodbased inference tests to estimate the experimental sensitivity of high-dimensional data sets. We extend theMLLmethod by including kernel density estimators (KDE) to avoid binning the classifier output to extract the resulting one-dimensional signal and background probability density functions. We first test our method on toy models generated with multivariate Gaussian distributions, where the true probability distribution functions are known. Later, we apply the method to two cases of interest at the LHC: a search for exotic Higgs bosons, and a Z' boson decaying into lepton pairs. In contrast to physical-based quantities, the typical fluctuations of the ML outputs give non-smooth probability distributions for puresignal and pure-background samples. The non-smoothness is propagated into the density estimation due to the good performance and flexibility of the KDE method. We study its impact on the final significance computation, and we compare the results using the average of several independent ML output realizations, which allows us to obtain smoother distributions. We conclude that the significance estimation turns out to be not sensible to this issue.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Machine-learned and codified synthesis parameters of oxide materials
    Edward Kim
    Kevin Huang
    Alex Tomala
    Sara Matthews
    Emma Strubell
    Adam Saunders
    Andrew McCallum
    Elsa Olivetti
    [J]. Scientific Data, 4
  • [42] Machine-learned Behaviour Models for a Distributed Behaviour Repository
    Jahl, Alexander
    Baraki, Harun
    Jakob, Stefan
    Fax, Malte
    Geihs, Kurt
    [J]. ICAART: PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 1, 2022, : 188 - 199
  • [43] Simple machine-learned interatomic potentials for complex alloys
    Byggmastar, J.
    Nordlund, K.
    Djurabekova, F.
    [J]. PHYSICAL REVIEW MATERIALS, 2022, 6 (08)
  • [44] Machine-Learned Verification and Advance Notice Oracles for Autonomous Systems
    Drusinsky, Doron
    Litton, Matthew
    Michael, James Bret
    [J]. COMPUTER, 2023, 56 (07) : 121 - 130
  • [45] Machine-learned interatomic potentials: Recent developments and prospective applications
    Eyert, Volker
    Wormald, Jonathan
    Curtin, William A.
    Wimmer, Erich
    [J]. JOURNAL OF MATERIALS RESEARCH, 2023, 38 (24) : 5079 - 5094
  • [46] Machine-learned interatomic potentials for alloys and alloy phase diagrams
    Rosenbrock, Conrad W.
    Gubaev, Konstantin
    Shapeev, Alexander V.
    Partay, Livia B.
    Bernstein, Noam
    Csanyi, Gabor
    Hart, Gus L. W.
    [J]. NPJ COMPUTATIONAL MATERIALS, 2021, 7 (01)
  • [47] Predicting trajectory behaviour via machine-learned invariant manifolds
    Krajnak, Vladimir
    Naik, Shibabrat
    Wiggins, Stephen
    [J]. CHEMICAL PHYSICS LETTERS, 2022, 789
  • [48] Machine-learned metrics for predicting the likelihood of success in materials discovery
    Kim, Yoolhee
    Kim, Edward
    Antono, Erin
    Meredig, Bryce
    Ling, Julia
    [J]. NPJ COMPUTATIONAL MATERIALS, 2020, 6 (01)
  • [49] Active Probing for Improved Machine-Learned Recognition of Network Traffic
    Anvari, Hamidreza
    Lu, Paul
    [J]. MACHINE LEARNING FOR NETWORKING, MLN 2020, 2021, 12629 : 122 - 140
  • [50] Adsorption Enthalpies for Catalysis Modeling through Machine-Learned Descriptors
    Andersen, Mie
    Reuter, Karsten
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2021, 54 (12) : 2741 - 2749