Predicting trajectory behaviour via machine-learned invariant manifolds

被引:3
|
作者
Krajnak, Vladimir [1 ]
Naik, Shibabrat [1 ]
Wiggins, Stephen [1 ]
机构
[1] Univ Bristol, Sch Math, Fry Bldg,Woodland Rd, Bristol BS8 1UG, England
基金
英国工程与自然科学研究理事会;
关键词
Hamiltonian dynamics; Support vector machines; Phase space structures; Roaming; Ionmolecule reaction; MULTIPLE TRANSITION-STATES; ION-MOLECULE REACTIONS; ROAMING REACTIONS; REACTIVE ISLANDS; DYNAMICS; ISOMERIZATION;
D O I
10.1016/j.cplett.2021.139290
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, we use support vector machines (SVM) to develop a machine learning framework to discover phase space structures that distinguish between distinct reaction pathways. The SVM model is trained using data from trajectories of Hamilton's equations and works well even with relatively few trajectories. Moreover, this framework is specifically designed to require minimal a priori knowledge of the dynamics in a system. This makes our approach computationally better suited than existing methods for high-dimensional systems and systems where integrating trajectories is expensive. We benchmark our approach on Chesnavich's CH4+ Hamiltonian.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Machine-learned Behaviour Models for a Distributed Behaviour Repository
    Jahl, Alexander
    Baraki, Harun
    Jakob, Stefan
    Fax, Malte
    Geihs, Kurt
    [J]. ICAART: PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 1, 2022, : 188 - 199
  • [2] Machine-learned metrics for predicting the likelihood of success in materials discovery
    Kim, Yoolhee
    Kim, Edward
    Antono, Erin
    Meredig, Bryce
    Ling, Julia
    [J]. NPJ COMPUTATIONAL MATERIALS, 2020, 6 (01)
  • [3] Machine-learned metrics for predicting the likelihood of success in materials discovery
    Yoolhee Kim
    Edward Kim
    Erin Antono
    Bryce Meredig
    Julia Ling
    [J]. npj Computational Materials, 6
  • [4] Predicting subcellular localization of proteins using machine-learned classifiers
    Lu, Z
    Szafron, D
    Greiner, R
    Lu, P
    Wishart, DS
    Poulin, B
    Anvik, J
    Macdonell, C
    Eisner, R
    [J]. BIOINFORMATICS, 2004, 20 (04) : 547 - 556
  • [5] The machine-learned radii of atoms
    Nikolaienko, Tymofii Yu.
    Bulavin, Leonid A.
    [J]. COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2021, 1204
  • [6] Machine-Learned Decision Trees for Predicting Gold Nanorod Sizes from Spectra
    Shiratori, Katsuya
    Bishop, Logan D. C.
    Ostovar, Behnaz
    Baiyasi, Rashad
    Cai, Yi-Yu
    Rossky, Peter J.
    Landes, Christy F.
    Link, Stephan
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (35): : 19353 - 19361
  • [7] Machine-Learned Premise Selection for Lean
    Piotrowski, Bartosz
    Mir, Ramon Fernandez
    Ayers, Edward
    [J]. AUTOMATED REASONING WITH ANALYTIC TABLEAUX AND RELATED METHODS, TABLEAUX 2023, 2023, 14278 : 175 - 186
  • [8] Understanding machine-learned density functionals
    Li, Li
    Snyder, John C.
    Pelaschier, Isabelle M.
    Huang, Jessica
    Niranjan, Uma-Naresh
    Duncan, Paul
    Rupp, Matthias
    Mueller, Klaus-Robert
    Burke, Kieron
    [J]. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2016, 116 (11) : 819 - 833
  • [9] Machine-learned electron densities of nucleic acids
    Lee, Alex J.
    Rackers, Joshua A.
    Bricker, William P.
    [J]. BIOPHYSICAL JOURNAL, 2024, 123 (03) : 499A - 499A
  • [10] CatEmbed: A Machine-Learned Representation Obtained via Categorical Entity Embedding for Predicting Adsorption and Reaction Energies on Bimetallic Alloy Surfaces
    Kirkvold, Clara
    Collins, Brianna A.
    Goodpaster, Jason D.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15 (26): : 6791 - 6797