CatEmbed: A Machine-Learned Representation Obtained via Categorical Entity Embedding for Predicting Adsorption and Reaction Energies on Bimetallic Alloy Surfaces

被引:0
|
作者
Kirkvold, Clara [1 ]
Collins, Brianna A. [1 ]
Goodpaster, Jason D. [1 ]
机构
[1] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2024年 / 15卷 / 26期
基金
美国国家科学基金会;
关键词
STRATEGIES;
D O I
10.1021/acs.jpclett.4c01492
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Machine-learning models for predicting adsorption energies on metallic surfaces often rely on basic elemental properties and electronic and geometric descriptors. Here, we apply categorical entity embedding, a featurization method inspired by natural language processing techniques, to predict adsorption energies on bimetallic alloy surfaces using categorical descriptors. Using this method, we develop a machine-learned representation from categorical descriptors (e.g., surface composition, adsorbate type, and site type) of the slab/adsorbate complex. By combining this representation with numerical features (e.g., slab metal stoichiometric ratios), we create the CatEmbed representation. Remarkably, decision tree models trained using CatEmbed, which includes no explicit geometric information, achieve a Mean Absolute Error (MAE) of 0.12 eV. Additionally, we extend this technique to predict reaction energies on bimetallic surfaces, creating the CatEmbed-React representation, which achieves an MAE of 0.08 eV. These findings highlight the effectiveness of categorical entity embedding for predicting adsorption and reaction energies on bimetallic alloy surfaces.
引用
收藏
页码:6791 / 6797
页数:7
相关论文
empty
未找到相关数据